关闭

欧拉函数应用

118人阅读 评论(0) 收藏 举报
分类:

题目:https://vjudge.net/contest/173827#problem/E(UVA:11426)

这题真是值得反省自己,之前做过一遍,比赛的时候硬是没想起来怎么做的,完全没有思路,这就很难受,很绝望,所以这回认认真真的把这个题又补了一遍。。。

题意:

求sum(gcd(i,j),1<= i < j < =n) 1 < n< 4000001

问题转化成怎么求f(n),对于一个n来说,枚举因子乘上个数即可。

我们假设b[n]表示1到n-1与n的gcd的和,那么G[n]=G[n-1]+b[n];

a[i]表示与gcd(n, x)= i 的x的个数;b[n]=sum( a[i] * i ) , 所以我们只需求a[i]即可;根据gcd(n, x)=i —–>gcd(n/i, x/i) = 1,

因此仅仅要求出欧拉函数phi(n / i),就能够得到与n / i互质的个数,从而求出gcd(x , n) = i的个数,这样总体就能够求解了

详见博客:(1)http://www.cnblogs.com/zhengguiping–9876/p/4998848.html

(2)http://blog.csdn.net/hyogahyoga/article/details/8520895

补充:对于欧拉函数,根据分解定理可以求得phi【n】,但是要求每个人数的欧拉函数值的时候,可以用欧拉打表法,就不需要一个一个的求了,打表法如下:

phi[1]=1;
    for(int i=2; i<maxn; i++)
    {
        if(!phi[i])
        {
            for(int j=i; j<maxn; j+=i)
            {
                if(!phi[j])
                {
                     phi[j]=j;
                }
                phi[j]=phi[j]/i*(i-1);
            }
        }
    }

关于本题的博客如下:

#include <iostream>
#include <cstring>
#include <cstdio>

using namespace std;
typedef long long ll;
const ll maxn=4000001;
ll phi[maxn],s[maxn],b[maxn];
int main()
{
    ll n;
    memset(phi,0,sizeof(phi));
    memset(s,0,sizeof(s));
    memset(b,0,sizeof(b));
    phi[1]=1;
    for(int i=2; i<maxn; i++)
    {
        if(!phi[i])
        {
            for(int j=i; j<maxn; j+=i)
            {
                if(!phi[j])
                {
                     phi[j]=j;
                }
                phi[j]=phi[j]/i*(i-1);
            }
        }
    }
    for(int i=1;i<maxn;i++)
        for(int j=i+i;j<maxn;j+=i)
          b[j]+=i*phi[j/i];
    for(int i=2;i<maxn;i++)
        s[i]=s[i-1]+b[i];
    while(scanf("%lld",&n)&&n)
    {
        printf("%lld\n",s[n]);
    }
    return 0;
}

(今天被教主说除了数学啥都不会,,,就很难受,,于是我决定最近去学学图论和数据结构,先去学一个周的线段树和后缀数组,树状数组,,,,)

1
0
查看评论

欧拉函数应用

在n*n平面上有n*n-m-1(除原点与另m个点),可以从原点引k条线,询问最多能穿过多少点。 设法最简表示每种方案(i,j)->i,j互质,容易想到最多有(phi[2]+phi[3]+...+phi[n])*2]种方案,而每种方案能射掉的点为n/max(i,j),接下来便好统计。 #in...
  • huyuncong
  • huyuncong
  • 2012-02-03 21:13
  • 609

SPOJ-NUMTRYE 质因子分解 + 欧拉函数应用

传送门:SPOJ -NUMTRYE题解: 首先∑ni=1gcd(n,i)=∑d|ndϕ(nd)\sum_{i=1}^ngcd(n, i) = \sum_{d|n}d\phi(\frac{n}{d}) 所以g(n)=∑ni=1n/gcd(n,i)=∑d|nndϕ(nd)=∑d|ndϕ(d)g(n) ...
  • ADjky
  • ADjky
  • 2017-04-07 14:45
  • 318

hdu2588gcd-欧拉函数应用

题意: 给定T组数据,每组数据N,M 询问有多少个 1=m 思路: 以前只是知道欧拉函数(当然求还是靠板子)有用来求从1-n-1中 与n互质的个数,这个题是一个应用 (x,n)>=是题目要求-> 设 gcd(x,n)==d    p 与 q 分别是 在等式1.2中d的...
  • qq_33951440
  • qq_33951440
  • 2016-11-17 20:09
  • 148

ZZULIOJ 2182: 欧拉函数应用

2182: 不是签到题XD Time Limit: 1 Sec  Memory Limit: 64 MB Submit: 89  Solved: 20 SubmitStatusWeb Board Description 小明是一个贪心的...
  • weixin_37282581
  • weixin_37282581
  • 2017-09-02 10:05
  • 82

欧拉函数应用1

/************************************************************************/| 求 a^n % b (a,b,n <= 1000000000) k is Z | 思路: a^n -> a^[ phi(b)...
  • custqi
  • custqi
  • 2011-06-05 23:16
  • 404

poj 3090 (欧拉函数应用)

点击打开链接 题意: 求在第一象限, 隐藏的好深的欧拉函数 只要坐标x和y互质就可以了, 又因为是矩阵,可以只算下三角,就可以了,最后*2+1(x=y=1是一个特殊的点), #include"stdio.h" #include"string....
  • yyf573462811
  • yyf573462811
  • 2013-07-22 17:37
  • 545

poj 2480 (欧拉函数应用)

点击打开链接 //求SUM(gcd(i,n), 1<=i<=n) /* g(n)=gcd(i,n),根据积性定义g(mn)=g(m)*g(n)(gcd(m,n)==1) 所以gcd(i,n)是积性的,所以f(n)=sum(gcd(i,n))是积性的, f(n)=f(p1^...
  • yyf573462811
  • yyf573462811
  • 2013-07-22 15:04
  • 769

ACM-欧拉函数

欧拉函数被定义为小于或等于n的数中
  • u011787119
  • u011787119
  • 2014-11-05 12:11
  • 1032

lightoj1370——Bi-shoe and Phi-shoe(欧拉函数应用)

Description Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some ba...
  • blue_skyrim
  • blue_skyrim
  • 2016-08-04 20:14
  • 816

Visible Lattice Points 欧拉函数应用

/*根据题意。如果该点是不可见的。则必定经过整数点。也就是非互质。相反,如果是可见的,那么必定是互质的。 则题目转为求1-n内的互质点对数。即为求1-ai(i:1-n)内的欧拉函数值。可现在1-n的范围内用递推打表生成欧拉函数值。*/ #include const int maxn=1001; i...
  • ehi11
  • ehi11
  • 2012-08-22 22:27
  • 1119
    个人资料
    • 访问:13882次
    • 积分:884
    • 等级:
    • 排名:千里之外
    • 原创:76篇
    • 转载:2篇
    • 译文:0篇
    • 评论:3条