相信很多人都知道就是phi(n)*n/2
然而我似乎没有找到证明。
于是令我很不爽,在此水一篇。
假设与n互质的集合为{p1,p2,p3,……,p phi(n)}
如果我们列出几个,容易发现p1+p phi(n)=n,p2+p phi(n)-1=n……
只要证明上述命题,那这个结论就显然了。
即若(a,n)=1 有(n-a,n)=1
因为(a,b)=(b%a,a) 辗转相除法
所以得证
欧拉函数的延伸:关于求小于等于n且与n互质的数的和。
最新推荐文章于 2019-04-21 18:51:02 发布