rho详解:http://blog.csdn.net/u012061345/article/details/48316811
欧拉函数应用与性质及求法:http://blog.csdn.net/sentimental_dog/article/details/52002608
首先,先知道一个性质φ(n)=n(1-1/a1)(1-1/a2)……(1-1/ak);
a1,a2……,ak为n分解的质因数(去重)。
然后这道题,n<=10^18,需要用到rho(大整数分解)+Miller-Rabin。
#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cstdlib>
#define LL long long
using namespace std;
LL N,cnt;
LL prime[]={0,2,3,5,7,11,13,17,19,23};
LL a[100009];
LL gcd(LL a,LL b){return (!b)?a:gcd(b,a%b);}
LL q_mul(LL a,LL b,LL mod)//快速加
{
LL s=0;
while(b)
{
if(b&1) s=(s+a)%mod;
a=(a+a)%mod;
b>>=1;
}
return s;
}
LL q_pow(LL a,LL b,LL mod)//快速幂
{
LL s=1;
while(b)
{
if(b&1) s=q_mul(s,a,mod);
a=q_mul(a,a,mod);
b>>=1;
}
return s;
}
bool MR(LL n)
{
if (n==2) return 1;
if (n%2==0) return 0;
int lg=0;LL w=n-1;
while (w%2==0) lg++,w/=2;
for (int i=1;i<=9;i++)
{
if (n==prime[i]) return 1;
LL x=q_pow(prime[i],w,n);
if (x==1||x==n-1) continue;
for (int j=1;j<=lg;j++)
{
LL y=q_mul(x,x,n);
if (x!=1&&x!=n-1&&y==1) return 0;
x=y;
}
if (x!=1) return 0;
}
return 1;
}
LL rho(LL n)
{
LL c=rand()%(n-1)+1,x1=rand()%n,x2=x1,k=2,p=1;
for(int i=1;p==1;i++)
{
x1=(q_mul(x1,x1,n)+c)%n;
if (x1==x2) return 1;
p=gcd(n,abs(x1-x2));
if (i==k) k<<=1,x2=x1;
}
return p;
}
void divi(LL n)
{
if(n==1) return;
if(MR(n))
{
a[++cnt]=n;return;
}
LL p=1;
while(p==1) p=rho(n);
divi(p);divi(n/p);
}
int main()
{
freopen("phi.in","r",stdin);
freopen("phi.out","w",stdout);
scanf("%lld",&N);
divi(N);
sort(a+1,a+cnt+1);
cnt=unique(a+1,a+cnt+1)-a-1;
for(int i=1;i<=cnt;i++) N=N/a[i]*(a[i]-1);
printf("%lld",N);
return 0;
}
bzoj
不知道为什么bzoj是PE
那么由上述式子可以逆推得出,
N=φ(N)(p1/(p1-1))(p2/(p2-1))…(pk/(pk-1))
那我们用dfs,来递归实现。
#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cstdlib>
#define LL long long
#define M 10000009
using namespace std;
LL N,ans[M],prime[M];
int k,cnt,cnt2;
bool np[M];
void prepare()
{
np[0]=1,np[1]=1;
for(int i=2;i<M;i++)
{
if(!np[i])
{
prime[++cnt]=i;
}
for(int j=1;j<=cnt&&1ll*i*prime[j]<M;j++)
{
np[i*prime[j]]=1;
if(i%prime[j]==0) break;
}
}
}
LL q_mul(LL a,LL b,LL mod)//快速加
{
LL s=0;
while(b)
{
if(b&1) s=(s+a)%mod;
a=(a+a)%mod;
b>>=1;
}
return s;
}
LL q_pow(LL a,LL b,LL mod)//快速幂
{
LL s=1;
while(b)
{
if(b&1) s=q_mul(s,a,mod);
a=q_mul(a,a,mod);
b>>=1;
}
return s;
}
bool MR(LL n)
{
if (n==2) return 1;
if (n%2==0) return 0;
int lg=0;LL w=n-1;
while (w%2==0) lg++,w/=2;
for (int i=1;i<=9;i++)
{
if (n==prime[i]) return 1;
LL x=q_pow(prime[i],w,n);
if (x==1||x==n-1) continue;
for (int j=1;j<=lg;j++)
{
LL y=q_mul(x,x,n);
if (x!=1&&x!=n-1&&y==1) return 0;
x=y;
}
if (x!=1) return 0;
}
return 1;
}
bool pd_prime(LL x)
{
if(x<M) return (!np[x]);
else return MR(x);
}
void dfs(int dep,LL x,LL res)
{
if(x+1>prime[cnt]&&pd_prime(x+1)) {ans[++cnt2]=res*(x+1);}
LL tres=res,tx=x,s;
for(int i=dep;i>=1;i--)
{
if(x%(prime[i]-1)==0)
{
s=1;
tres=res;
tx=x/(prime[i]-1);
while(tx%s==0)
{
tres*=prime[i];
dfs(i-1,tx/s,tres);
s*=prime[i];
}
}
}
if(x==1){ans[++cnt2]=res;return;}
}
int main()
{
freopen("arc.in","r",stdin);
freopen("arc.out","w",stdout);
prepare();//cout<<MR(17);
scanf("%lld%d",&N,&k);
dfs(cnt,N,1);
sort(ans+1,ans+cnt2+1);
printf("%lld ",ans[1]);k--;
for(int i=2;k&&i<=cnt2;i++)
{
if(ans[i]!=ans[i-1]) printf("%lld ",ans[i]),k--;
}
return 0;
}
60分线性筛暴力
#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cstdlib>
#define LL long long
#define M 10000009
using namespace std;
int prime[M],cnt,phi[M],n;
LL ans;
bool np[M];
void work()
{
np[0]=1,np[1]=1;
phi[1]=1;
for(int i=2;i<M;i++)
{
if(!np[i])
{
prime[++cnt]=i;
phi[i]=i-1;
}
for(int j=1;j<=cnt&&i*prime[j]<M;j++)
{
np[i*prime[j]]=1;
if(i%prime[j]==0)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
}
int main()
{
freopen("sum.in","r",stdin);
freopen("sum.out","w",stdout);
work();
scanf("%d",&n);
for(int i=1;i<=n;i++)
ans+=phi[i];
printf("%lld",ans);
return 0;
}