108毕业设计:基于计算机视觉的蔬菜(黄瓜)病虫害检测算法研究

目录

前言

课题背景和意义

实现技术思路

一、算法理论基础

1.1 YOLOv5

1.2 卷积神经网络

二、 数据集

2.1 数据集

2.2 数据扩充

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

3.3 结果分析

最后


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

       🚀对毕设有任何疑问都可以问学长哦!

    选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

       🎯基于计算机视觉的蔬菜(黄瓜)病虫害检测算法研究

课题背景和意义

       黄瓜作为一种重要的经济蔬菜,广泛种植于全球各地。然而,黄瓜在生长过程中常常受到多种病虫害的影响,如白粉病、黄瓜花叶病毒、黄瓜小卷蛾等,这些病虫害对黄瓜的产量和品质造成了重大威胁。及时、准确地检测和识别这些病虫害,对提高产量、降低损失、实现精准农业管理具有重要意义。通过高效的图像处理算法,可以实现对黄瓜病虫害的快速识别与分类,从而为农民提供科学的防治建议,推动生态农业的发展。

实现技术思路

一、算法理论基础

1.1 YOLOv5

       YOLOv5是一种基于卷积神经网络的实时目标检测算法,旨在实现高效、快速的物体检测。作为YOLO系列的最新版本,YOLOv5在保留了YOLO系列的单阶段检测框架优势的基础上,进行了多项优化和改进,包括网络结构、数据增强和训练策略等。该算法通过将输入图像划分为网格,并在每个网格中预测边界框和类别概率,从而实现快速且准确的目标检测。其设计理念使得YOLOv5具有较高的检测速度和较低的计算资源需求,适合实时应用。

       YOLOv5采用了一种新的模型架构,其中引入了多个创新组件,如CSPNet、PANet和自动混合精度训练等。这些组件的结合,使得模型在特征提取和信息传递方面更加高效,进一步提升了检测精度和速度。同时,YOLOv5支持多种模型规模,用户可以根据实际应用需求和计算资源选择合适的模型版本。此外,YOLOv5还通过改进的损失函数和数据增强策略,增强了对小目标和复杂场景的检测能力。YOLOv5在保持高精度的同时,显著提高了检测速度,使其能够满足实时处理的需求。

1.2 卷积神经网络

       卷积神经网络(CNN)是一种专门用于处理图像数据的深度学习模型,因其在特征提取和模式识别方面的出色表现,广泛应用于计算机视觉任务。针对黄瓜病虫害检测的需求,研究中使用了改进的CNN架构,通过构建包含多个卷积层、池化层和全连接层的深度网络,自动提取黄瓜叶片图像中的特征。模型通过在大量标注的病虫害图像上进行训练,使得CNN能够学习到不同病虫害的特征,如颜色变化、斑点形状和叶片变形等。通过这种方式,卷积神经网络能够快速准确地识别出黄瓜叶片的健康状态和潜在的病虫害,帮助农民及时采取措施。

       在模型训练过程中,数据集的准备至关重要。研究中收集了大量标注良好的黄瓜病虫害图像,涵盖不同种类的病虫害及其不同生长阶段。通过数据增强技术(如旋转、缩放、翻转等)扩充数据集,以提升模型的鲁棒性并减少过拟合风险。训练过程中,采用交叉熵损失函数和优化器(如Adam)进行模型优化,并使用验证集监控模型性能。训练完成后,对模型进行评估,使用准确率、精确率、召回率和F1-score等指标综合衡量模型的表现。通过这些步骤,最终构建出一个高效的黄瓜病虫害检测系统,为农业生产提供了有效的技术支持和决策依据。

二、 数据集

2.1 数据集

       数据采集可以通过自主拍摄和互联网获取两种方式进行。自主拍摄时,研究者可以在实际种植环境中拍摄黄瓜植物的不同生长阶段,包括健康状态和各种病虫害的特征。选择不同的光照、角度和背景进行拍摄,以确保数据的多样性。此外,互联网采集则可以通过爬虫技术或公开数据集获取标注良好的黄瓜病虫害图片,这种方式能够快速扩充数据集的规模,确保模型训练时的样本丰富性。通常使用专业的标注工具(如LabelImg、Labelbox等)对采集到的图像进行标注。

2.2 数据扩充

       对数据集进行划分,通常将数据集分为训练集、验证集和测试集。一般情况下,训练集占比约为70%-80%,验证集和测试集各占10%-15%。这种划分有助于评估模型的泛化能力和防止过拟合。此外,为了增强数据集的多样性,可以应用数据扩展技术,如旋转、翻转、缩放和颜色变换等。

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

       病虫害检测之前,首先需要收集和准备数据集。这通常包括获取大量标注的黄瓜图像,涵盖不同病虫害的种类和生长阶段。数据预处理步骤包括图像的缩放、归一化和增强,以确保模型训练的有效性和鲁棒性。数据增强技术(如旋转、翻转、亮度调整等)可以有效增加数据集的多样性,帮助模型更好地学习到各种病虫害的特征。

import cv2
import os
import numpy as np
from keras.preprocessing.image import ImageDataGenerator

def preprocess_image(image_path):
    # 读取图像
    image = cv2.imread(image_path)
    # 缩放到指定大小
    image = cv2.resize(image, (640, 640))  # YOLOv5输入尺寸
    # 归一化
    image = image / 255.0
    return image

# 数据增强示例
datagen = ImageDataGenerator(rotation_range=20, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True)

       构建YOLOv5模型的基础上,加入CBAM注意力机制,以增强模型对重要特征的关注能力。CBAM通过在卷积特征图上实施通道注意力和空间注意力,能够有效地提高模型对关键区域的敏感度,从而提升检测精度。在构建模型时,可以通过对YOLOv5的网络结构进行调整,插入CBAM模块,增强特征提取能力。

import torch
import torch.nn as nn
from models.common import Conv



# 在YOLOv5模型中引入CBAM
class YOLOv5WithCBAM(nn.Module):
    def __init__(self):
        super(YOLOv5WithCBAM, self).__init__()
        self.backbone = ...  # YOLOv5的主干网络
        self.cbam = CBAM(in_channels=256)  # 假设在某一层引入CBAM

    def forward(self, x):
        x = self.backbone(x)
        x = self.cbam(x)  # 应用CBAM
        return x

       经过数据预处理和模型构建后,进入模型训练阶段。使用准备好的数据集进行训练,采用合适的损失函数和优化器(如Adam或SGD),通过反向传播算法更新模型参数。训练过程中,可以使用验证集监控模型性能,以防止过拟合,并通过早停策略(Early Stopping)来优化训练过程。此外,合理调整学习率和批量大小等超参数,有助于提高模型的收敛速度和稳定性。

from torch.utils.data import DataLoader
from torchvision import datasets, transforms

# 数据加载
train_dataset = datasets.ImageFolder(root='train_data', transform=transforms.ToTensor())
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)

# 模型训练示例
model = YOLOv5WithCBAM()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()

for epoch in range(num_epochs):
    for images, labels in train_loader:
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

3.3 结果分析

       模型训练完成后,需要对模型进行评估,以确定其在黄瓜病虫害检测任务中的实际表现。可以使用测试集进行评估,计算准确率、召回率、F1-score等指标,全面衡量模型的性能。同时,可以通过可视化检测结果(如绘制边界框和分类标签)来直观分析模型的检测效果,发现潜在的改进空间。

import matplotlib.pyplot as plt

# 模型评估示例
model.eval()
with torch.no_grad():
    for images, labels in test_loader:
        outputs = model(images)
        # 计算评估指标,例如准确率
        # 可视化检测结果
        plt.imshow(images[0].permute(1, 2, 0).numpy())
        plt.title(f'Predicted: {outputs[0]}')
        plt.show()

海浪学长项目示例:

最后

       我是海浪学长,创作不易,欢迎点赞、关注、收藏。

       毕设帮助,疑难解答,欢迎打扰!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值