In this winter holiday, Bob has a plan for skiing at the mountain resort.
This ski resort has MM different ski paths and NN different flags situated at those turning points.
The ii-th path from the S_iS
i
-th flag to the T_iT
i
-th flag has length L_iL
i
.
Each path must follow the principal of reduction of heights and the start point must be higher than the end point strictly.
An available ski trail would start from a flag, passing through several flags along the paths, and end at another flag.
Now, you should help Bob find the longest available ski trail in the ski resort.
Input Format
The first line contains an integer TT, indicating that there are TT cases.
In each test case, the first line contains two integers NN and MM where 0 < N \leq 100000 < N ≤ 10000 and 0 < M \leq 1000000 < M ≤ 100000 as described above.
Each of the following MM lines contains three integers S_iS
i TiTi , and L_i~(0 < L_i < 1000) Li (0 < L i <1000) describing a path in the ski resort.
Output Format
For each test case, ouput one integer representing the length of the longest ski trail.
样例输入
1
5 4
1 3 3
2 3 4
3 4 1
3 5 2
样例输出
6
题意 给n个点和m条边的DAG图,问图中的最长路。
我们可以用topo序来求。
代码
#include<bits/stdc++.h>
using namespace std ;
typedef long long LL ;
const int MAXN = 10000+10 ;
const int MAXM = 100000+10 ;
const int mod = 1e9+7 ;
struct Edge {
int from,to,val,next;
}edge[MAXM];
int head[MAXN],top;
void init(){
memset(head,-1,sizeof(head));
top=0;
}
void addedge(int a,int b,int c){
edge[top].from=a;edge[top].to=b;
edge[top].val=c;edge[top].next=head[a];
head[a]=top++;
}
int n,m;
int in[MAXN];
int val[MAXN];
void work(){
queue<int>Q;
memset(val,0,sizeof(val));
for(int i=1;i<=n;i++) if(!in[i]) Q.push(i);
while(!Q.empty()){
int now=Q.front();Q.pop();
for(int i=head[now];i!=-1;i=edge[i].next){
Edge e=edge[i];
val[e.to]=max(val[e.to],val[now]+e.val);// DP思想
if(--in[e.to]==0) Q.push(e.to);
}
}
int ans=0;
for(int i=1;i<=n;i++) ans=max(ans,val[i]);
printf("%d\n",ans);
}
int main(){
int T;scanf("%d",&T);
while(T--){
init();
memset(in,0,sizeof(in)) ;
scanf("%d%d",&n,&m);
while(m--){
int a,b,c;scanf("%d%d%d",&a,&b,&c);
addedge(a,b,c);
in[b]++;
}
work();
}
return 0;
}