关闭
当前搜索:

[置顶] [巨坑]那些年没有填的坑qwq

洛谷 P2485 BSGS(2018.1.11AC) HLJYY题库 codevs codeforces bzoj...
阅读(88) 评论(1)

[置顶] 那些年犯过的c++林泽阳级别的错误

1、2017/8/12,luoguP2678跳石头,flag=i;打成i=flag。已上刑。 2、2017/8/12,luoguP1316丢瓶盖,scanf中没有调用地址&。已上刑。 3、2017/8/13,luoguP1149火柴棒等式,在区余数模运算中把%号打成了&号。 4、2017/8/13,luoguP2440木材加工,二分答案>写成...
阅读(329) 评论(1)

福州集训DAY5及以后几天

接下来讲的东西基本上都没有涉及过,这两天只是整理了一下所有资料,并没有什么总结好写的。这些知识以后每一块都学过之后就会出博客。...
阅读(18) 评论(0)

福州集训DAY3

今天没什么收获。主要是考试发挥终于正常拿了160rank3(昨天可是爆零)。...
阅读(19) 评论(1)

福州集训DAY4

数论 上午讲的数论我基本都会(但是题目都不会做啊)。 有这些注意点: c++中的模运算和通常意义上的mod模运算是不一样的。c++中%运算保留符号,也就是负数取模之后还是负数。但是通常意义上的mod运算得到的结果都是自然数。 c++的/并不是向下取整,而是向0取整。(先把符号去掉,再向下取整,再添上符号)。 原根的概念和用法。 测试 真不愧是省选模拟赛。三道贼难的省选数论题。这里题解......
阅读(21) 评论(0)

福州集训DAY2

打了一天的水漂 上午的考试就不多说了。。感觉写了160分,但是实际上爆零???我也不知道为何,可能是没有建子文件夹,也有可能是没有删中间输出,到时候出来源程序再看吧。 第一题是一道暴力模拟题,可以用二分答案做。这就不多说了,只要理解清楚题意就基本可以了。 第二题是一道玄学的区间分组问题。他一个玄学的题解我也有点不记得了。。 第三题是一道在有向图上找最长链的问题。 下午讲的贪心和分治,都是...
阅读(22) 评论(0)

2018福州集训DAY1

2018.2.5主要讲了搜索 搜索 最基本操作bfs和dfs。这两种手段在不同的问题中能有不同的效果。 如果有这样一棵搜索树: dfs是从根结点开始每一次都随便选一条路,走到叶节点再返回;二bfs是从根节点开始一层一层向下搜索。如果每一层都是无限的,那么需要用dfs,如果没有明确的叶节点,那么就用bfs。 剪枝 剪枝就是这样: 搜到一个结点 把子树全部切掉。剪枝一般有这样的...
阅读(22) 评论(0)

《算法导论》学习笔记——扩展欧几里得原理

扩展欧几里得算法的原理 扩展欧几里得算法即欧几里得算法的一个变形。我们先来看《算法导论》上的一段伪代码。 EXTENDED-EUCLID if b==0 return(a,1,0) else(d_,x_,y_)=EXTENDED-EUCLID(b,a mod b) (d,x,y)=(d_,y_,x_-round(a/b)*y_) return (d,x,y) 我们可以发现递归到最后是求出...
阅读(43) 评论(0)

《算法导论》学习笔记——如何证明有无穷多个素数

证明的定理 在自然数集合中,素数有无穷多个。 证明 假设我们已知这么几个素数p1,p2,p3……pn'>p1,p2,p3……pnp1,p2,p3……pnp_1,p_2,p_3……p_n,我们需要证明的是已知这些素数能推出第n+1'>n+1n+1n+1个素数,那么数学归纳法就可以证明有无穷多个素数了。 我们构造一个新数d=p1×p2×p...
阅读(42) 评论(0)

《算法导论》学习笔记——GCD定理的证明

GCD定理 GCD定理是欧几里得算法的灵魂。欧几里得算法就是我们以前说的“辗转相除法”。 GCD定理: gcd(a,b)=gcd(b,a%b)'>gcd(a,b)=gcd(b,a%b)gcd(a,b)=gcd(b,a%b)gcd(a,b)=gcd(b,a\%b) 证明 我们的证明就是要证明上面两者相互能整除。 设gcd(a,b)=d'>gcd(a,b)=dgcd(a,b)...
阅读(37) 评论(0)

Trie 树

Trie树 Trie树是一个时间换空间的字符串结构。它是一个二十六叉树。它是这样存字符串的: 比如对于一个字符串“abcd”,它先看看根节点相连的点有没有a,那就新开一个点;继续找,看看a相连的点有没有b,重复上述操作…… 然后为了避免一个字符串是另外一个字符串的前缀的问题,我们再在每一个结点上面新开一个域,就是endflag域,代表有一个字符串在这里结束。 HLoj611 Trie树...
阅读(46) 评论(0)

树状数组

树状数组 先给一张树状数组的图片吧,有图有真相。 树状数组就长这样↑,因为看上去像一棵树,所以就叫树状数组了。我们用cc数组来存储aa数组的某些内容,从而优化时间复杂度。 如何实现 lowbit 先来了解一个概念lowbitlowbit。从字面意思上理解:就是最低的二进制位。在树状数组中,这个的意思是:把一个整数化成二进制,最低的“1”表示的数是多少。 例如:如果要求low...
阅读(62) 评论(0)

Photoshop CS6常用快捷键汇总

PS快捷键大全一、工具箱(多种工具共用一个快捷键的可同时按【Shift】加此快捷键选取)矩形、椭圆选框工具 【M】 移动工具 【V】 套索、多边形套索、磁性套索 【L】 魔棒工具 【W】 裁剪工具 【C】 切片工具、切片选择工具 【K】 喷枪工具 【J】 画笔工具、铅笔工具 【B】 像皮图章、图案图章 【S】 历史画笔工具、艺术历史画笔 【Y】 像皮擦、背景擦...
阅读(41) 评论(0)

最大流问题

定义 网络 网络就是一个有向带权图。为什么叫网络,我也不知道……我们可以进行一系列的类比:网络流就代表则运输水管,每一根水管都有一个单位时间内的运输上限,整个运水系统进入水量和出水量是相等的。所以:有向图的权值我们称为容量。 流量 就是单位进入系统的入度和出去系统的出度。 容量 的意义就在于,单位时间内流过的“水流”必须小于等于这个容量值。 再回头看一下网络的定义: 网络的...
阅读(35) 评论(0)

《算法导论》学习笔记——裴蜀等式及其扩展的证明

裴蜀等式及其扩展裴蜀等式是exgcdexgcd的骨髓,是建立在gcdgcd,它保证了exgcdexgcd的有解性。 裴蜀等式 存在让ax+by=gcd(a,b)ax+by=gcd(a,b)的x,yx,y; 扩展 gcd(a,b)gcd(a,b)是{ax+by:x,y∈Z}\{ax+by:x,y∈Z\}的最小正元素。证明先设ss是这个集合中最小正元素。 设q=⌊as⌋q=\lfloor \f...
阅读(75) 评论(0)

数论——Baby Step Giant Step及扩展算法

bsgs算法 Baby Step Giant Step算法,简称BSGS算法,也称为大步小步算法. 解决对象 离散对数:当x≡Gk(modm)x\equiv G^k\pmod m时,logG(x)≡k(modϕ(m))log_G(x)\equiv k\pmod{\phi(m)}。此处的logG(x)log_G(x)是xx以整数GG为底,模ϕ(m)\phi(m)的离散对数。 BSGS算法...
阅读(101) 评论(0)

OI省选知识汇总

简单列了一点 1.1 基本数据结构 1. 数组 2. 链表,双向链表 3. 队列,单调队列,双端队列 4. 栈,单调栈 1.2 中级数据结构 1. 堆 2. 并查集与带权并查集 3. hash 表     自然溢出     双hash 1.3 高级数据结构 1. 树状数组 2. 线段树,线段树合并 3. 平衡树     Treap 随机平衡二叉树     Splay...
阅读(65) 评论(0)

数论——素数

判定素数穷举法判定bool check(int k) { if(k==0||k==1)return false; for(int i=2;i<=sqrt(k);i++) if(k%i==0) return false; return true; }埃氏筛法void make_primetable(int n) { memset(is_prime,tru...
阅读(66) 评论(0)

数论——斐波那契练习题二——斐波那契变式

题面题目描述定义一个数列: f(0)=a,f(1)=b,f(n)=f(n−1)+f(n−2)f(0)=a,f(1)=b,f(n)=f(n−1)+f(n−2)f(0)=a,f(1)=b,f(n)=f(n−1)+f(n−2)f(0) = a, f(1) = b, f(n) = f(n - 1) + f(n - 2) f(0)=a,f(1)=b,f(n)=f(n−1)+f(n−2)f(0)=a,f(1...
阅读(79) 评论(0)

数论——斐波那契练习题一——斐波那契中的gcd

题面题目描述对于Fibonacci数列:1,1,2,3,5,8,13……大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输出格式 输入格式: 两个正整数n和m。(n,m<=10^9) 注意:数据很大输出格式:Fn和Fm的最大公约数。 由于看了大数字就头晕,所以只要输出最后的8位数字就可以了。输入输出样例输入样例#1: 复制 4 7 输出样例...
阅读(56) 评论(0)

数论——斐波那契数列

定义斐波那契数,又称黄金分割数列。 递推公式是:F(n)=F(n−1)+F(n−2)F(n)=F(n-1)+F(n-2).推导通项公式设常数rr和ss,使得F(n)−r×F(n−1)=s×[F(n−1)−r×F(n−2)]F(n)-r\times F(n-1)=s\times [F(n-1)-r\times F(n-2 )] 所以r+s=1,−r×s=1r+s=1,-r\times s=1 在...
阅读(92) 评论(0)
93条 共5页1 2 3 4 5 ... 下一页 尾页
    博客专栏
    数论

    文章:16篇

    阅读:1260
    个人资料
    • 访问:10618次
    • 积分:1013
    • 等级:
    • 排名:千里之外
    • 原创:83篇
    • 转载:10篇
    • 译文:0篇
    • 评论:37条
    友情链接!