关闭

一文读懂AlphaGo背后的强化学习

本文是强化学习名作——“Reinforcement Learning: an Introduction”一书中最为重要的内容,旨在介绍学习强化学习最基础的概念及其原理,让读者能够尽快的实现最新模型。毕竟,对任何机器学习实践者来说,RL(强化学习,即Reinforcement Learning)都是一种十分有用的工具,特别是在AlphaGo的盛名之下。...
阅读(2784) 评论(0)

成为一名推荐系统工程师永远都不晚

推荐系统产品形式的演进,背景是互联网从PC到移动的演进,PC上是搜索为王,移动下是推荐为王,自然越来越重要。随着各种可穿戴设备的丰富,越来越多的推荐产品还会涌现出来。产品和技术相互协同发展,未来会有更多有意思的推荐算法和产品形式问世,成为一名推荐系统工程师永远都不晚。...
阅读(8457) 评论(5)

如何成为一名数据科学家

在回答这个问题之前,希望你先想想另外一个问题:为什么要成为数据科学家?当然,如果你是为了10万美元的年薪也无可厚非,但是我衷心希望你能将这个职业和自己的价值感挂钩。因为成为数据科学家的路途会很辛苦,但如果你将其看成是实现个人价值的一种方式,那么追寻目标才能带来长久的成就感,在这个过程中会感到快乐并且动力十足。...
阅读(3063) 评论(0)

这是一个转型AI的励志故事,从非科班到拿下竞赛一等奖

在计算机行业,关于从业人员的素质,一直都有一个朴素的认识——科班出身好过非科班,学历高的好过学历低的。大部分时候,这个看法是对的。在学校学习,有老师指点,有同学讨论,有考试压迫,有项目练手。即便不大用心的学生,几年耳濡目染下来,毕业后作为半个专业人士,还是没什么问题的。...
阅读(15893) 评论(30)

TensorFlow全新的数据读取方式:Dataset API入门教程

Dataset API是TensorFlow 1.3版本中引入的一个新的模块,主要服务于数据读取,构建输入数据的pipeline。...
阅读(7455) 评论(2)

卷积神经网络中十大拍案叫绝的操作

CNN从2012年的AlexNet发展至今,科学家们发明出各种各样的CNN模型,一个比一个深,一个比一个准确,一个比一个轻量。我下面会对近几年一些具有变革性的工作进行简单盘点,从这些充满革新性的工作中探讨日后的CNN变革方向。...
阅读(2650) 评论(2)

关于机器学习 你不得不思考这些问题

在过去的几个月中,笔者与很多的决策者交流了有关人工智能特别是机器学习方面的问题。其中有几名高管已经被投资者询问了有关他们在机器学习(Machine Learning)方面的战略,以及在哪些方面运用了机器学习。那么这个技术课题为什么突然会成为公司董事会讨论的话题呢? 计算机应该为人类解决问题。传统的方法是“编写”所需的程序,换句话说,就是我们教电脑问题解决的算法。该算法详细描述了解决问题的过程...
阅读(427) 评论(0)

TensorFlow下构建高性能神经网络模型的最佳实践

随着神经网络算法在图像、语音等领域都大幅度超越传统算法,但在应用到实际项目中却面临两个问题:计算量巨大及模型体积过大,不利于移动端和嵌入式的场景;模型内存占用过大,导致功耗和电量消耗过高。因此,如何对神经网络模型进行优化,在尽可能不损失精度的情况下,减小模型的体积,并且计算量也降低,就是我们将深度学习在更广泛的场景下应用时要解决的问题。...
阅读(6469) 评论(1)

如何成为一名无人驾驶工程师

作者 | 刘少山 无人驾驶作为一项新兴技术,落地为产品需要大量算法、工程、产品贯通的AI全栈人才。笔者在最近一年招聘中发现,许多技术方向的同学对人工智能既爱又畏惧,一方面觉得这是未来,另一方面又觉得很难而不敢触碰。懂工程的同学做算法时有很大的畏惧感,而专注算法的同学又常常容易陷入某个算法而缺乏工程落地能力。 这次笔者以一个从业者角度来与大家聊一下如何入门无人驾驶/机器人行业...
阅读(7366) 评论(11)

AI 工程师职业指南 | 《程序员》11 月精彩内容

从年初起,几家国际大厂的开发者大会,无论是微软Build、Facebook F8还是稍后的Google I/O,莫不把“AI优先”的大旗扯上云霄。 如果这一波AI大潮只是空喊几句口号,空提几个战略,空有几家炙手可热的创业公司,那当然成不了什么大气候。但风浪之下,我们看到的却是,Google一线的各大业务纷纷改用深度学习,落伍移动时代的微软则已拉起一支近万人的AI队伍。而国内一线大厂的情况,恐...
阅读(135) 评论(0)

无需一行代码就能搞定机器学习的开源神器

作者 | Shantanu Kumar 责编 | 魏伟 对于机器学习和数据科学的初学者来说,最大的挑战之一是需要同时学习太多知识,特别是如果你不知道如何编码。你需要快速地适应线性代数、统计以及其他数学概念,并学习如何编码它们,对于新用户来说,这可能会有点难以承受。 如果你没有编码的背景并且发现很难学习下去,这时你可以用一个GUI驱动的工具来学习数据科学。当你刚...
阅读(67) 评论(0)

深度学习中的注意力机制

最近两年,注意力模型(Attention Model)被广泛使用在自然语言处理、图像识别及语音识别等各种不同类型的深度学习任务中,是深度学习技术中最值得关注与深入了解的核心技术之一。本文以机器翻译为例,深入浅出地介绍了深度学习中注意力机制的原理及关键计算机制,同时也抽象出其本质思想,并介绍了注意力模型在图像及语音等领域的典型应用场景。...
阅读(5244) 评论(2)

提高代码阅读能力的7种方法

随着越来越多的公司使用敏捷开发,能够阅读别人的代码比以往显得更重要。这就需要学习一些如何提高这项技能的技巧。本文提供了7种提高代码阅读技巧的方法。 在软件开发人员的职位描述中有阅读源代码。然而,这体验并不总能令人愉悦。不是每个人都喜欢阅读别人的代码,因为他们觉得那很乏味,甚至有时令人感到沮丧。有些案例中,你开始阅读别人的代码,最终会产生一种痛苦的感觉,因为你不能理解这些代码,或者说代码写得不好。...
阅读(64) 评论(0)

五年之后,你的企业是拥抱AI,还是已被淘汰

大多数人对人工智能的印象都很薄弱,比如深蓝、AlphaGo,又比如人工客服。社会大众对人工智能除了能够下棋,执行程序化动作,究竟还能带来什么改变,认知实在有限。 但是诸位作为企业家,如果也是这种状态,那恐怕不远的将来就将落后于时代。世界顶尖的谷歌Deepmind团队近日宣布已经研发出了新版AlphaGo Zero,并在《Nature》上发表论文:新版的AlphaGo Zero可以只在...
阅读(211) 评论(0)

一文读懂深度学习与机器学习的差异

文章来源 | OSC 如果你经常想让自己弄清楚机器学习和深度学习的区别,阅读该文章,我将用通俗易懂的语言为你介绍他们之间的差别。 机器学习和深度学习变得越来越火。突然之间,不管是了解的还是不了解的,所有人都在谈论机器学习和深度学习。无论你是否主动关注过数据科学,你应该已经听说过这两个名词了。 为了展示他们的火热程度,我在 Google...
阅读(72) 评论(0)
48条 共4页1 2 3 4 下一页 尾页
    个人资料
    • 访问:114413次
    • 积分:1361
    • 等级:
    • 排名:千里之外
    • 原创:25篇
    • 转载:19篇
    • 译文:4篇
    • 评论:64条
    文章分类
    最新评论