解题思路:刚开始没读懂题,还以为直接排序了事,后来发现不能用排序。仔细读题之后发现题目样例是这个意思:8(导弹个数) 389 207 155(第一个系统)300 299 170 158 65(第二个系统),因为300>155,所以需要第二个系统。要注意已经设置的系统也可以用来拦截导弹,故而每一次都从头开始判断导弹高度是否小于系统可拦截高度。
ps:wa了几次,在discuss中借鉴了两组测试数据,分享一下。
6 7 3 5 1 2 1(输出:2)
4 1 2 1 2(输出:2)
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int high[1010];
int stay[1010];
int main()
{
int n;
while(~scanf("%d",&n))
{
int j=0;
for(int i=0;i<n;i++)
{
scanf("%d",&high[i]);
if(i==0)
stay[j]=high[i];
else
{
int sign=0;
for(int k=0;k<=j;k++)
{
if(stay[k]>=high[i])
{
sign=1;
stay[k]=high[i];
break;
}
}
if(!sign)
{
++j;
stay[j]=high[i];
}
}
}
printf("%d\n",j+1);
}
return 0;
}
HDU 1257 解题报告
本文介绍了一道经典算法题目的解题思路,重点在于如何通过比较导弹高度与防御系统的拦截能力来确定最少需要设置多少个系统才能成功拦截所有导弹。通过具体的示例和测试数据进行了解释,并提供了完整的 C++ 代码实现。
5601

被折叠的 条评论
为什么被折叠?



