简析java XML

本文简要介绍了XML的基本概念,包括XML的全称、文档声明、标签元素的规则、属性的使用、注释的格式以及特殊字符的转义。详细阐述了XML的语法特点,如标签的命名规范,属性的定义,以及如何进行注释和使用CDATA来避免特殊字符解析问题。

1.XML全称为:Extensible Markup Language 可扩展性标记语言。

2.语法:

     01.文档声明:声明XML文档的类型

 <?xml version="1.0" encoding="UTF-8"?>

      02.标签元素:

                        a.文件有且只有一个根标签,其他标签都必须封装在根标签里面

              b.非空标签必须有"开始标签"和"结束标签"组成,空标签没有"开始标签"和"结束标签"

              c.XML全体标签必须形成树形,即标签不允许交叉

              d.命名规范:字母,数字等  ①严格区分大小写

                                        ②不能以数字,下划线,XMl等开头

                                        ③不能包括空格

                                        ④名字中间不能包含:

    03 属性 :

           a.一个标签可以有多个属性

           b.属性值一定要用"" 或者 '' 引起来

   04 注释 :

           a.格式:<!-- 注释内容 -->

           b.文档声明之前不能注释

           c.注释不能嵌套

    05 CDATA专区: 

           a.放在CDATA中的内容,会原封不动的输出

           b.语法:<![CDATA[内容]]>

3.特殊字符:

    <      &lt;

    >      &gt;

    '      &apos;

    "      &quot;

    &      &amp;


          

内容概要:本文介绍了一个基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型,用于光伏功率预测,结合Matlab代码实现。该模型充分考虑光伏发电的不确定性与时空相关性,利用MBLS提升预测精度与学习效率,并通过Copula函数刻画多个光伏站点间预测误差的非线性相关结构,实现高精度的概率区间预测。文档还列举了大量相关的科研方向与Matlab仿真应用案例,涵盖风电预测、负荷预测、综合能源系统优化、路径规划、电力系统分析等多个领域,展示了其在可再生能源预测与智能系统优化中的广泛应用前景。; 适合人群:具备一定Matlab编程基础,从事可再生能源预测、电力系统优【Copula光伏功率预测】基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型(Matlab代码实现)化、智能算法应用等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:① 提升光伏功率预测的准确性与可靠性,尤其适用于多站点协同预测场景;② 掌握MBLS与Copula理论在时空相关性建模中的融合方法,构建概率预测框架;③ 借助Matlab代码实现,开展学术复现、科研创新或实际工程项目开发。; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,重点理解MBLS的建模流程与Copula函数在相关性分析中的具体应用,同时可参考文档列出的相关研究方向拓展应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值