线性代数 | 复习笔记

文章目录

以清华大学林润亮老师的ppt为基础进行整理
主要用来进行知识点回顾和快速复习

1 向量及其运算

线性代数

线性代数是建立在向量的 加法数乘 这两种所谓 线性运算 上的

两向量相等

两个向量相等    ⟺    \iff 两者长度相等, 方向相同

向量运算性质

向量加法和数乘的运算性质: 交结零负一乘分分
分别是: 向量加法交换律, 向量加法结合律, 零向量, 反向量, 1 数乘向量, 两个数乘数乘向量, 两个数加数乘向量, 一个数数乘两个向量

列向量

a = ( a 1 a 2 ⋮ a n ) \boldsymbol{a}= \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} a=a1a2an
其中 a i a_i ai 为向量 a \boldsymbol{a} a 的第 i i i 个分量

向量的线性组合

v 1 , ⋯   , v m \boldsymbol v_1,\cdots,\boldsymbol v_m v1,,vm m m m n n n 维向量, 称 c 1 v 1 + ⋯ + c m v m c_1\boldsymbol v_1+\cdots +c_m\boldsymbol v_m c1v1++cmvm 为向量 v 1 , ⋯   , v m \boldsymbol v_1,\cdots,\boldsymbol v_m v1,,vm 的一个线性组合

在 3 维空间中,一般,对于向量 u , v , w \boldsymbol u,\boldsymbol v,\boldsymbol w u,v,w
{非零向量 u \boldsymbol u u} 的所有线性组合是一条直线;
{不共线的 u , v \boldsymbol u,\boldsymbol v u,v} 的所有线性组合是一个平面;

{不共面的 u , v , w \boldsymbol u,\boldsymbol v,\boldsymbol w u,v,w} 的所有线性组合是整个三维空间.

向量的长度

向量 v \boldsymbol v v 的长度或模定义为 ∥ v ∥ = v ⋅ v \left\|\boldsymbol v\right \|=\sqrt{\boldsymbol v\cdot \boldsymbol v} v=vv

向量正交

v ⋅ w = 0 \boldsymbol v\cdot \boldsymbol w=0 vw=0, 则称向量 v \boldsymbol v v w \boldsymbol w w 垂直 / 正交. 记作 v ⊥ w \boldsymbol v\perp \boldsymbol w vw

Cauchy-Schwarz 不等式

∣ v ⋅ w ∣ = ∥ v ∥ ∥ w ∥ |\boldsymbol v\cdot \boldsymbol w|=\left \|\boldsymbol v\right \|\left \|\boldsymbol w\right \| vw=vw, 等号成立当且仅当一个向量是另一个向量的倍数.

三角不等式

∥ v + w ∥ ≤ ∥ v ∥ + ∥ w ∥ \left\|\boldsymbol v+ \boldsymbol w\right \|\le \left\|\boldsymbol v\right\|+\left\|\boldsymbol w\right\| v+wv+w, 等号成立当且仅当 v , w \boldsymbol v, \boldsymbol w v,w 之一为另一向量的非负倍数.

2 矩阵与线性方程组

对矩阵与向量乘积的理解

A x A \boldsymbol x Ax
理解1 得到 A A A 各列向量的一个线性组合;
理解2 列向量 $ \boldsymbol x$ 与 A A A 各行向量做内积

对线性方程组的理解

A x = b A \boldsymbol x=\boldsymbol b Ax=b
理解1 A A A 列向量的线性组合, 使之等于 b \boldsymbol b b;
理解2 求向量 x \boldsymbol x x, 使之与 A A A 的行向量内积分别为 b \boldsymbol b b 中的元素

可逆矩阵

A x = b A \boldsymbol x=\boldsymbol b Ax=b( n n n 个方程, n n n 个未知数) 对任意向量 b \boldsymbol b b 有唯一解, 则称方阵 A \boldsymbol A A 可逆

A = ( u , v , w ) A=(\boldsymbol u, \boldsymbol v, \boldsymbol w) A=(u,v,w) 可逆, 则 u , v , w \boldsymbol u, \boldsymbol v, \boldsymbol w u,v,w 的全部线性组合所得空间是整个三维空间, 这时向量 u , v , w \boldsymbol u, \boldsymbol v, \boldsymbol w u,v,w 线性无关 / 不共面, 相应 A x = b A \boldsymbol x=\boldsymbol b Ax=b 只有零解

线性方程组的行图和列图

行图(二维) 两直线交点
列图两列向量的线性组合

3 高斯消元法

矩阵的初等行变换

对方程组 A x = b A \boldsymbol x=\boldsymbol b Ax=b, 消元法涉及以下三种同解变形:

  1. 把一个方程减去另一个方程的倍数;
  2. 交换两个方程的位置;
  3. 用一个非零数乘一个方程.

相应地对增广矩阵作以下三种行变换 (即: 初等行变换):

  1. 把一行减去另一行的倍数;
  2. 交换两行;
  3. 用一个非零数乘一行.

增广矩阵

对线性方程组 A x = b A \boldsymbol x=\boldsymbol b Ax=b 做消元法, 即用一系列初等矩阵在左边, 去乘增广矩阵 ( A ∣ b ) (A | \boldsymbol b) (Ab)

消去矩阵

将单位阵中某个 0 0 0 变为非零的数得到的矩阵称为消去矩阵, 消去矩阵是一类初等矩阵

置换阵

P 12 = ( 0 1 0 1 0 0 0 0 1 ) P_{12}=\begin{pmatrix} 0&1&0 \\ 1&0&0 \\ 0&0&1 \end{pmatrix} P12=010100001
置换阵 P P P 满足 P − 1 = P T P^{-1}=P^{T} P1=PT

4 矩阵的运算

矩阵乘法的性质

满足结合律, 左分配律, 右分配律
矩阵的乘法一般不可交换, 消去律一般也不成立

分块矩阵

矩阵的转置

A T = A A^T=A AT=A 则称 A A A 是一个对称矩阵
A T = − A A^T=-A AT=A 则称 A A A 是一个反对称矩阵
R R R m × n m\times n m×n 矩阵 (实数域), 则 R R T RR^T RRT m × n m\times n m×n 对称矩阵, 且其对角元均非负

5 矩阵的逆

逆矩阵

对方阵 A A A, 若存在矩阵 B B B, 满足 A B = B A = I AB=BA=I AB=BA=I, 则称 A A A 是可逆的. 称 B B B A A A 的逆矩阵, 记作 A − 1 A^{-1} A1.
可逆矩阵也称为非奇异矩阵, 不可逆矩阵也称为奇异矩阵

性质

  1. n n n 阶阵 A A A 可逆等价于 A A A n n n 个主元
  2. 方阵的逆唯一
  3. A A A 可逆, 则 A x = b A\boldsymbol x=\boldsymbol b Ax=b 有唯一解 x = A − 1 b \boldsymbol x=A^{-1}\boldsymbol b x=A1b
  4. A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0 有非零解, 则 A A A 不可逆
  5. 二阶阵 A = ( a b c d ) A=\begin{pmatrix} a&b \\ c&d \end{pmatrix} A=(acbd) 可逆等价于 a d − b c ≠ 0 ad-bc\neq0 adbc=0, 且 A − 1 = 1 a d − b c ( d − b − c a ) A^{-1}=\frac{1}{ad-bc}\begin{pmatrix} d&-b \\ -c&a \end{pmatrix} A1=adbc1(dcba)
  6. 对角阵可逆等价于对角元均不为 0 0 0
  7. ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A
  8. ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1

6 LU 分解

将矩阵分解成一个下三角矩阵和一个上三角矩阵的乘积
E A = U , A = E − 1 U = L U EA=U, A=E^{-1}U=LU EA=U,A=E1U=LU
A = E − 1 D U = L D U A=E^{-1}DU=LDU A=E1DU=LDU 其中 L L L U U U 的对角元为 1 1 1

LU 分解的存在性和唯一性

设可逆矩阵 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n 的顺序主子式 A k = ( a i j ) k × k ( k = 1 , ⋯   , n ) A_k = (a_{ij})_{k\times k}(k=1,\cdots ,n) Ak=(aij)k×k(k=1,,n) 均为可逆阵, 则 A A A L U LU LU 分解. 若 l i i = 1 , u i i ≠ 0 ( 1 ≤ i ≤ n ) l_{ii}=1, u_{ii}\neq 0(1\le i\le n) lii=1,uii=0(1in), 则分解唯一

A A A 是一个 n n n 阶可逆阵, 则存在置换阵 P P P 使得 P A = L U PA=LU PA=LU

对称矩阵的 L D L T LDL^T LDLT 分解

7 向量空间

向量子空间

V V V R n \mathbb R^n Rn 的非空子集, 且 V V V 关于向量加法和数乘运算封闭 ( ∀ α , β ∈ V , ∀ c 1 , c 2 ∈ R ⟹ c 1 α + c 2 β ∈ V \forall \alpha ,\beta\in V,\forall c_1,c_2\in \mathbb R \Longrightarrow c_1\alpha+c_2\beta\in V α,βV,c1,c2Rc1α+c2βV), 则称 V V V R n \mathbb R^n Rn 的一个向量子空间

推广的向量空间的定义

在由称为“向量”的元素构成的非空集合 V V V 中, 若定义了加法和数乘运算, 且对任意向量 a , b , c \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} a,b,c 及数域 F \mathbb{F} F, k , l ∈ F k,l\in \mathbb{F} k,lF 满足以下八条性质:

  1. a + b = b + a \boldsymbol a + \boldsymbol b=\boldsymbol b + \boldsymbol a a+b=b+a
  2. a + ( b + c ) = ( a + b ) + c \boldsymbol a + (\boldsymbol b+\boldsymbol c)=(\boldsymbol a + \boldsymbol b)+\boldsymbol c a+(b+c)=(a+b)+c
  3. 存在零向量 0 ,   a + 0 = a \boldsymbol 0,\ \boldsymbol a+\boldsymbol 0=\boldsymbol a 0, a+0=a
  4. 对任意向量 a \boldsymbol a a, 存在唯一相反向量 − a -\boldsymbol a a, 使得 a + ( − a ) = 0 \boldsymbol a+(-\boldsymbol a)=\boldsymbol 0 a+(a)=0
  5. 1 ⋅ a = a 1\cdot \boldsymbol a=\boldsymbol a 1a=a
  6. ( k l ) a = k ( l a ) (kl)\boldsymbol a=k(l\boldsymbol a) (kl)a=k(la)
  7. k ( a + b ) = k a + k b k(\boldsymbol a+\boldsymbol b)=k\boldsymbol a+k\boldsymbol b k(a+b)=ka+kb
  8. ( k + l ) a = k a + l a (k+l)\boldsymbol a=k\boldsymbol a+l\boldsymbol a (k+l)a=ka+la

则称 V V V 为定义在数域 F \mathbb{F} F 上的向量空间

列空间

A A A 的列向量所有线性组合构成的空间称为 A A A 的列空间, 记作 C ( A ) C(A) C(A)
C ( A ) = { c 1 α 1 + c 2 α 2 + ⋯ + c n α n ∣ c i ∈ R } = { y ∈ R m ∣ y = A x , x ∈ R n } C(A)=\{c_1 \boldsymbol \alpha_1+ c_2 \boldsymbol \alpha_2+\cdots+ c_n \boldsymbol \alpha_n | c_i\in \mathbb R\}=\{\boldsymbol y\in\mathbb R^m | \boldsymbol y=A \boldsymbol x,\boldsymbol x\in \mathbb R^n\} C(A)={ c1α1+c2α2++cnαnciR}={ yRmy=Ax,xRn}

A x = b A \boldsymbol x=\boldsymbol b Ax=b 有解    ⟺    b ∈ C ( A ) \iff \boldsymbol b\in C(A) bC(A)

求列空间: 将矩阵化为阶梯形, 阶梯形中主元所在的的列 / 原矩阵中主元所在的列的线性组合就是列空间

零空间

N ( A ) = { x ∣ A x = 0 } ⊂ R n N(A)=\{\boldsymbol x | A \boldsymbol x= \boldsymbol 0\}\subset \mathbb R^n N(A)={ xAx=0}Rn

求零空间: 将矩阵化为阶梯形 / 简化行阶梯形 (RREF), 将主元所在的列对应解 x \boldsymbol x x 位置的数字标记为 1, 通过 A x = 0 A \boldsymbol x=\boldsymbol 0 Ax=0 确定 x \boldsymbol x x

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
线性代数超强笔记,可用于期末复习,考研等」线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考研等线性代数超强笔记,可用于期末复习,考
### 回答1: MIT(麻省理工学院)的线性代数公开课非常详细和全面,这门课程是由麻省理工学院的教授Gilbert Strang主讲的。课程内容涵盖了线性代数的基本概念和应用,将线性代数的理论与实践相结合。 这门课程的笔记非常详细,内容包括了课堂讲义、示例问题的详细解析、证明过程和习题答案等等。课程的整个结构非常清晰,从基础的向量、矩阵和行列式开始讲解,逐渐深入到线性方程组、特征值和特征向量、相似矩阵等内容。 在笔记中,每个概念和理论都会进行详细的解释和证明,帮助学生更好地理解和掌握相关知识。同笔记还提供了丰富的示例和习题,让学生通过实际的问题来巩固和应用所学知识。 另外,笔记中还有大量的图表、图示和实例来帮助学生直观地理解和记忆各种概念和算法。特别是对于抽象的概念,通过图形化的解释可以更好地帮助学生理解。 总之,MIT的线性代数公开课的笔记内容非常详细和全面,适合对线性代数感兴趣的学生参考。无论是作为学习线性代数的资料,还是作为复习和巩固知识的辅助材料,这些笔记都是非常有价值的资源。无论是在理论还是应用层面,学生都能够通过这些笔记全面地掌握线性代数的知识。 ### 回答2: MIT线性代数公开课是由麻省理工学院开设的一门线性代数课程,涵盖了从基础概念到高阶技巧的全方位学习内容。下面是对该课程的笔记总结: 该课程由吉尔伯特•斯特朗(Gilbert Strang)教授主讲,他是一位著名的数学家和教育家,为学生提供了一种简单而深入的学习方法。 该课程共分为26节课,每节课都有对应的讲义和视频,以及一些习题和作业,使学生能够更好地掌握课程内容。 课程首先介绍了向量和矩阵的基础知识,讲解了向量的加法、减法和数乘运算,以及矩阵的加法、减法和乘法运算,并且讲解了这些运算的几何意义。然后,课程进一步探讨了线性方程组的求解方法,包括高斯消元法和矩阵的逆运算。这些内容为后续课程奠定了基础。 接下来,课程介绍了行列式和特征值的概念,并讲解了如何计算行列式和求解特征值和特征向量。特征值和特征向量在矩阵变换中起着重要的作用,因此对于理解线性代数的应用非常重要。 随后,课程进一步深入探讨了线性变换、正交性和投影等概念,以及特殊矩阵的性质,如对称矩阵和正定矩阵。这些内容使学生能够更好地理解线性代数在实际应用中的重要性。 最后,课程介绍了一些高级线性代数的内容,如奇异值分解和特殊矩阵的标准形式。这些内容对于研究生和专业领域的学生尤为重要。 总的来说,MIT线性代数公开课提供了一套完整、系统的线性代数学习资源,不仅适用于初学者,还可以帮助已经具备一定线性代数基础的学生深入学习。课程中的讲义和视频内容清晰明了,配有大量实例和习题,以及讲解中的实演算,确保学生能够深入理解和掌握线性代数的核心概念和技巧。无论是在学术研究还是职业发展中,这门课程都具有重要的参考价值。 ### 回答3: 麻省理工学院(MIT)的线性代数公开课是一门非常出色的公开课,内容十分详细并且完整。以下是对该公开课的超详细笔记。 该公开课以线性代数为主题,通过教授线性代数的基本概念、理论和应用,帮助学生建立起对线性代数的深入理解和应用能力。 课程从基本概念讲起,首先介绍了向量和矩阵的定义、性质和操作。然后深入讲解了线性方程组的解法,包括高斯消元法和矩阵的行列式。接下来,课程探讨了向量空间和矩阵空间的性质及其应用,如子空间、基、维数等概念。进一步,课程讲解了线性变换和特征值、特征向量的概念及其重要性。 在讲解了线性代数的基本理论后,课程引入了矩阵分解和特殊矩阵的概念,如LU分解、QR分解和特征值分解等。随后,课程介绍了正交向量、正交矩阵和正交变换的概念及其在几何变换、信号处理等领域的应用。 此外,课程还涉及了线性代数在图论、最小二乘问题、数据压缩等领域的应用。通过实例和案例分析,课程帮助学生将线性代数的理论知识与实际问题相结合,提高解决实际问题的能力。 值得一提的是,该公开课还通过演示和实验的方式,让学生亲自动手进行线性代数的计算和应用,培养了学生的实践能力和创造力。 总的来说,麻省理工学院的线性代数公开课以其详细的内容和完整的知识体系,在教授线性代数知识和培养学生的应用能力方面取得了优异的成绩。无论是对于想要深入学习线性代数的学生,还是对于希望提高问题解决能力的人群,这门公开课都是非常推荐的选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值