神经网络与深度学习学习笔记 第六章 循环神经网络

CSDN和我兰的小伙伴好呀,开学不久,事务繁忙,将近两个月没有更新了,本期为大家更新邱锡鹏老师《神经网络与深度学习》这本书循环神经网络这一章的学习笔记,本人能力有限,希望抛转引玉,为学习这一本书的小伙伴们提供一些思路与启发

由于邱老师比较注重版权,因此在此声明,所有内容全部为学习邱老师课程及讲义的学习心得,不得用于任何类型的盈利活动,所有知识版权全部归邱锡鹏老师所有,在此仅做二次加工,以进行学术交流与分享!本博客分享结合邱老师的网课食用效果更佳!
在这里插入图片描述
话不多说,我们直接开始正文!

1.如何给神经网络增加记忆能力?

前馈神经网络的局限性

我们首先来看一下前馈神经网络(包括全连接神经网络和卷积神经网络)有什么局限性

(1)输入输出维度是固定的

在这里插入图片描述
在此,邱老师明确指出,前馈神经网络的问题在于无法处理变长序列。

(2)每次输入对应一个输出, 是独立的

后一时刻的输出既可能依赖之前时刻的输入也可能依赖之前时刻的输出(或者有更复杂的依赖关系)
在这里插入图片描述

我们需要设计一个网络,来自动的处理这种无限且相互依赖的自相关序列关系

邱老师还列举了一些例子,如有限状态自动机和图灵机。(尝试用一种我不懂的东西解释另外

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

虢子仪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值