数学+暴搜 Phi的反函数

这里写图片描述

               ----------

欧拉定理: phi(n)=(p1^x1)(p2^x2)… (1-1/p1) *(1/1/p2)….
也就是说,phi(n)=p1^(x1-1)(p1-1) ……
而现在,我们知道了phi(x)=n,要求 x,而x=p1^x1*p2^x2 *…

               ----------

根据常识(我现学的。。),最多分解出10个左右质因数。那就可以暴搜了。
把素数的表打出来,找出满足的(pri[i]-1),之后枚举pri[i]的次方。累计求出sum,与ans比较即可。
最后设剩余x,只要判断x+1是质数即可(具体不再解释)

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#define ll long long
#define N 2147483647
using namespace std;
int n,m,pri[50000],mark[50000],tot;
ll ans=2147483658ll;
inline bool check(int x)
{
    int hh=(int)sqrt(x);
    for(int i=1;pri[i]<=hh;i++)if(x%pri[i]==0)return 0;
    return 1;
}
inline void dfs(int i,int x,ll y)
{
    if(y>=ans)return;
    if(x==1){ans=y;return;}
    if(x>m&&check(x+1)){ans=min(ans,y*(x+1));}
    for(i=i+1;pri[i]-1<=m;i++)
    {
        if(pri[i]>x)break;
        if(x%(pri[i]-1)==0)
        {
            int l=x/(pri[i]-1);ll h=y*pri[i];
            dfs(i,l,h);
            while(l%pri[i]==0)
            {
                l/=pri[i];h*=pri[i];
                dfs(i,l,h);
            }
        }
    }
}
int main()
{
    scanf("%d",&n);m=sqrt(n);
    for(int i=2;i<=m+5;i++)
    {
        if(!mark[i])pri[++tot]=i;
        for(int j=1;j<=tot;j++)
        {
            if(pri[j]*i>m)break;
            mark[pri[j]*i]=1;
            if(i%pri[j]==0)break;
        }
    }
    dfs(1,n,1);
    if(ans<=N)printf("%lld",ans);
    else cout<<-1;
}
<think>好的,我现在需要帮助用户解决在Simulink中使用三角函数的问题,并给出示例教程或常见问题的解决方案。首先,我需要回顾一下用户提供的引用内容,看看是否有相关的信息可以利用。 根据用户提供的引用[1],提到了将自定义m函数封装为Simulink模块,这可能涉及到如何在Simulink中调用自定义函数,包括三角函数的使用。引用[2]和[3]则讨论了基于Simulink的电力电子设备混合控制策略设计,其中提到了输入变量如误差信号和误差变化率,以及隶属函数类型(三角形或梯形)。这里提到的隶属函数可能涉及到模糊逻辑控制,而三角函数在模糊逻辑中常常用于定义隶属度函数,比如三角形隶属函数。因此,用户可能在设计模糊控制系统时需要用到三角函数来构建这些隶属函数。 接下来,我需要考虑Simulink中如何使用三角函数。首先,Simulink中有内置的三角函数模块,比如Sine Wave模块和Math Function模块中的sin、cos等函数。用户可能需要生成正弦波信号,或者在模型中进行三角函数的数学运算。例如,在电力电子仿真中,PWM信号的生成可能需要使用正弦波作为调制信号。 另外,用户提到的隶属函数如果是三角形或梯形,可能需要使用Simulink中的Lookup Table模块或者Fuzzy Logic Controller模块来实现。这时候可能需要用三角函数来定义这些隶属函数的形状,或者计算相关的参数。例如,设计一个三角形隶属函数可能需要确定其中心点和宽度,这可能需要三角函数计算。 然后,常见的问题可能包括模块参数设置错误,比如频率、相位或幅值设置不正确导致波形不符合预期。另外,在自定义函数模块中使用三角函数时,需要注意单位是否一致,比如角度与弧度的转换。例如,Simulink中的三角函数默认使用弧度,如果输入是角度需要先转换为弧度。 还需要考虑示例教程的结构。可能需要分步骤说明如何添加Sine Wave模块,配置参数,连接示波器查看波形。另一个示例可能是在模糊逻辑控制器中设计三角形隶属函数,展示如何设置参数和仿真结果。 可能还需要提到调试技巧,比如使用Display模块或Scope模块实时查看信号,检查是否符合预期。此外,如果用户遇到模块报错,可能需要检查输入数据类型是否正确,是否超出了函数定义域,比如反正弦函数的输入是否在[-1,1]之间。 最后,根据引用[1]提到的自定义m函数封装,可以说明如何将包含三角函数的MATLAB函数集成到Simulink中,使用MATLAB Function模块,并给出一个简单的例子,比如实现一个正弦平方函数。 总结下来,回答的结构应该是先介绍内置模块的使用,然后给出具体示例,接着讨论常见问题及解决方案,最后提到高级应用如模糊控制和自定义函数封装。需要确保所有数学表达式使用正确的LaTeX格式,并引用提供的参考文献中的相关内容。</think>### Simulink三角函数应用指南 #### 一、内置三角函数模块使用 Simulink提供多种三角函数模块,主要集中在`Simulink/Math Operations`和`Simulink/Sources`库中: 1. **正弦波生成** 使用`Sine Wave`模块可生成连续正弦信号,参数设置公式为: $$ y = A \cdot \sin(2\pi ft + \phi) $$ 其中$A$为幅值,$f$为频率(Hz),$\phi$为初相位(弧度)[^2]。 2. **数学运算模块** `Math Function`模块支持17种数学运算,包含$\sin(x)/\cos(x)/\tan(x)$等三角函数及反三角函数。输入值默认以**弧度**为单位,需注意角度转换: $$ \theta_{rad} = \theta_{deg} \times \frac{\pi}{180} $$ #### 二、具体应用示例 **示例1:三相交流电源建模** ```mermaid graph LR A[Sine Wave 模块1<br>频率=50Hz, 相位=0] --> D[Scope] B[Sine Wave 模块2<br>相位=2π/3] --> D C[Sine Wave 模块3<br>相位=4π/3] --> D ``` 通过相位差$120^\circ$(即$2\pi/3$弧度)实现三相平衡[^2]。 **示例2:模糊控制器隶属函数设计** 在模糊逻辑工具箱中,三角形隶属函数的数学表达式为: $$ \mu(x) = \max\left(0, 1 - \frac{|x - c|}{w}\right) $$ 其中$c$为中心点,$w$为底边宽度。在Simulink中可通过`Fuzzy Logic Controller`模块直接配置[^3]。 #### 三、常见问题解决方案 | 问题现象 | 原因分析 | 解决方法 | |---------|---------|---------| | 波形幅值异常 | 模块参数单位错误(如角度未转弧度) | 添加`Gain`模块实现角度转弧度:$k=\pi/180$ | | 三角函数输出NaN | 输入超出定义域(如$\arcsin(2)$) | 增加`Saturation`模块限制输入范围[-1,1] | | 仿真速度慢 | 使用`Interpreted MATLAB Function`模块 | 改用`MATLAB Function`模块生成C代码加速 | #### 四、高级应用:自定义函数封装 通过`MATLAB Function`模块实现$y = \sin(x^2)$: ```matlab function y = customSin(u) y = sin(u.^2); end ``` 将此模块封装为子系统后,可设置输入/输出端口和参数掩码[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值