多元函数极值、Hessian矩阵、正定矩阵

这篇笔记,来自我对支持向量机(SVM)算法原理的学习。支持向量机算法最终归结为二次规划问题,研究二次规划问题,必须先从一般的最优化问题开始分析。如无特别声明,本文最优化问题特指寻求目标函数最小值。

一元函数最优化问题,可以简单归结为极值点必须满足下面两个条件:

d f d x = 0 (1) \frac{df}{dx}=0\tag{1} dxdf=0(1)
d 2 f d x 2 > 0 (2) \frac{d^2f}{dx^2}>0 \tag{2} dx2d2f>0(2)

#条件推广:一阶导数为零
二元函数情形,很容易得到第一个条件(1)式的推广形式:
∂ f ∂ x = 0 , ∂ f ∂ y = 0 (3) \frac{\partial f}{\partial x}=0, \frac{\partial f}{\partial y}=0\tag{3} xf=0,yf=0(3)

#条件推广:二阶导数为正
我们可以认为,沿任意方向 ( d x 1 , d x 2 ) = ( cos ⁡ α d t , sin ⁡ α d t ) (dx_1, dx_2)=(\cos\alpha dt, \sin \alpha dt) (dx1,dx2)=(cosαdt,sinαdt),都有
d 2 f d t 2 > 0 (4) \frac{d^2 f}{d t^2} > 0\tag{4} dt2d2f>0(4)

下面我们推导一下,看看有什么结果,
d f d t = ∂ f ∂ x 1 d x 1 d t + ∂ f ∂ x 2 d x 2 d t = ∂ f ∂ x 1 cos ⁡ α + ∂ f ∂ x 2 sin ⁡ α (5) \frac{df}{dt}=\frac{\partial f}{\partial x_1}\frac{dx_1}{dt} + \frac{\partial f}{\partial x_2}\frac{dx_2}{dt}=\frac{\partial f}{\partial x_1}\cos \alpha + \frac{\partial f}{\partial x_2}\sin \alpha\tag{5} dtdf=x1fdtdx1+x2fdtdx2=x1fcosα+x2fsinα(5)
$$
\frac{d2f}{dt2}=…=\frac{\partial^2 f}{\partial x_12}\cos2 \alpha

  • \frac{\partial^2 f}{\partial x_1 \partial x_2}\cos \alpha \sin \alpha
  • \frac{\partial^2 f}{\partial x_2 \partial x_1}\cos \alpha \sin \alpha
  • \frac{\partial^2 f}{\partial x_22}\sin2 \alpha \tag{6}
    $$

对于所有的 α \alpha α ,要求上式恒大于零,那么函数的这四个二阶偏导应该满足什么条件呢?

#Hessian矩阵
d = ( cos ⁡ α , sin ⁡ α ) d=(\cos \alpha, \sin \alpha) d=(cosα,sinα),则有,
d T ( ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ) d > 0 (7) d^T \left( \begin{matrix} \frac{\partial^2f}{\partial x_1^2} & \frac{\partial^2f}{\partial x_1 \partial x_2} \\ \frac{\partial^2f}{\partial x_2 \partial x_1} & \frac{\partial^2f}{\partial x_2^2} \end{matrix} \right) d > 0\tag{7} dT(x122fx2x12fx1x22fx222f)d>0(7)
其中,矩阵
H ( f ) = ( ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ) (8) H(f)=\left( \begin{matrix} \frac{\partial^2f}{\partial x_1^2} & \frac{\partial^2f}{\partial x_1 \partial x_2} \\ \frac{\partial^2f}{\partial x_2 \partial x_1} & \frac{\partial^2f}{\partial x_2^2} \end{matrix} \right)\tag{8} H(f)=(x122fx2x12fx1x22fx222f)(8)
称为 Hessian 矩阵,如果函数 f ( x ) f(x) f(x)二阶导数连续,则该矩阵实对称矩阵。我们看到,二元函数取得极小值的另一个条件的推广形式是,函数的 Hessian 矩阵是正定矩阵。其实,这个结论很容易推广到 n n n 原函数。

由前面讨论可知,(7)式表示函数在方向 d d d 的二阶导数,这算是 Hessian 矩阵的几何意义吧。

#多元函数极值的判定
如果实值多元函数 f ( x ) f(x) f(x) 二阶连续可导,并且在临界点 x ‾ \overline x x 处梯度(一阶导数)等于0,即 ∇ f ( x ‾ ) = 0 \nabla f(\overline x)=0 f(x)=0 , 为驻点。仅通过一阶导数无法判断在临界点 处是极大值还是极小值。

f ( x ) f(x) f(x) x ‾ \overline x x 点处的 Hessian 矩阵为 H ( x ‾ ) H(\overline x) H(x) 。由于 f ( x ) f(x) f(x) x ‾ \overline x x 点处连续,所以 H ( x ‾ ) H(\overline x) H(x) 是一个 n × n n \times n n×n 的对称矩阵。对于 H ( x ‾ ) H(\overline x) H(x) ,有如下结论:

  1. 如果 H ( x ‾ ) H(\overline x) H(x) 是正定矩阵,则临界点 x ‾ \overline x x 处是一个局部的极小值。
  2. 如果 H ( x ‾ ) H(\overline x) H(x) 是负定矩阵,则临界点 x ‾ \overline x x 处是一个局部的极大值。
  3. 如果 H ( x ‾ ) H(\overline x) H(x) 是不定矩阵,则临界点 x ‾ \overline x x 处不是极值。

#正定矩阵的判定

接下来的问题就是如何判断一个矩阵是否为正定矩阵了,这方面参考资料很多,本文不再赘述。


原创不易,如有帮助,敬请点赞、关注、收藏,谢谢支持!

  • 7
    点赞
  • 44
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
Hessian矩阵多元函数极值判定的重要工具。对于一个具有n个变量的多元函数f(x1, x2, ... , xn),Hessian矩阵是一个n×n的矩阵,其元素为二阶偏导数。Hessian矩阵的定义如下: Hessian矩阵的第i行第j列元素,即Hessian矩阵的第(i, j)元素,表示函数f对第i个变量x_i和第j个变量x_j的混合偏导数。 多元函数极值可能出现在驻点 (critical point)或者临界点 (boundary point)上,通过Hessian矩阵可以判断一个驻点的极值类型。具体的判断方法如下: 1. 首先,计算函数f的一阶偏导数,求出所有的驻点。 2. 对于每个驻点,计算Hessian矩阵。 3. 判断Hessian矩阵正定性(positive definite)、负定性(negative definite)、不定性(indefinite)或者半定性(positive semi-definite和negative semi-definite)。 - 如果Hessian矩阵在驻点处是正定的,则该点为函数的极小值点; - 如果Hessian矩阵在驻点处是负定的,则该点为函数的极大值点; - 如果Hessian矩阵在驻点处是不定的,则该点既不是极小值点也不是极大值点; - 如果Hessian矩阵在驻点处是半定的,则需要进一步分析。 4. 进一步分析半定性的情况。 - 如果Hessian矩阵在驻点处是半正定的,则该点可能是函数的极小值点,也可能是鞍点; - 如果Hessian矩阵在驻点处是半负定的,则该点可能是函数的极大值点,也可能是鞍点; - 如果Hessian矩阵在驻点处即半正定又半负定,则该点既可能是函数的极小值点又可能是极大值点。 通过以上步骤,我们可以利用Hessian矩阵来判断多元函数的驻点的极值类型,从而找到函数极值点。需要注意的是,Hessian矩阵为对称矩阵,而且其元素的值与函数的表达式有关,要根据具体问题进行计算,以得到准确的极值判定结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

许野平

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值