从一列n个数字中取最小的前k个数字。这是一个面试经常会问到问题,回答这个问题并不难,但是如何能分析出最优的算法,能够分析出多少种算法,这会是面试官真正感兴趣的问题。这里总结一下这个问题的所有解法与复杂度。
1. 快速排序法 O(N*logN)
最简单直接的方法就是快速排序+返回前k个数字。快速排序是复杂度为N*logN的算法,而查找前k个数字需要是时间复杂度为O(K)。总体的时间复杂度为O(N*logN)。
public class Main {
public static void main(String[] args) {
int[] arr = {1, 4, 3, 5, 7, 6, 2, 8, 9};
//模拟需要排序的数组
int k = 4;
//模拟需要返回的前k个最大数字
int res[] = qSAndBS(arr, k);
}
private static int[] qSAndBS(int[] arr, int k) {
quickSort(arr, 0, arr.length - 1);
int[] res = new int[k];
for (int i = 0; i < k; i++)
res[i] = arr[i];
return res;
}
private static void quickSort(int[] arr, int start, int end) {
if (start >= end) return;
int index = start, i = start, j = end + 1;
while (true) {
while (arr[++i] <= arr[index]) if (i == end) break;
while (arr[--j] >= arr[index]) if (j == index) break;
if (j <= i) break;
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
int temp = arr[j];
arr[j] = arr[index];
arr[index] = temp;
index = j;
quickSort(arr, start, index - 1);
quickSort(arr, index + 1, end);
}
}
2. 部分排序法 O(N*K)
实际上我们并不需要将整个数组进行排序,因为我们仅仅关心前K个最小的数字,这个时候我们可以考虑部分排序法,仅仅将我们需要的前K个数字排序。部分排序采用选择排序和插入排序较好,插入排序稳定,但是在元素较大的时候交换次数多的一塌糊涂,而选择排序正好又是所有的排序中交换次数最少的一种。两种算法各有优劣,一般来讲,这两种排序的复杂度为n2,但在这种情况下,我们仅需要前k个数字,因此仅需N*K的复杂度。在具体计算的时候我们要估计K与logN之间的大小关系,选择最优的算法。
public class Main {
public static void main(String[] args) {
int[] arr = {1, 4, 3, 5, 7, 6, 2, 8, 9};
//模拟需要排序的数组
int k = 4;
//模拟需要返回的前k个最大数字
int res[] = cSAndRe(arr, k);
}
private static int[] cSAndRe(int[] arr, int k) {
chooseSort(arr, k);
int[] res = new int[k];
for (int i = 0; i < k; i++)
res[i] = arr[i];
return res;
}
private static void chooseSort(int[] arr, int k) {
for (int i = 0; i < k; i++) {
int index = i;
for (int j = i; j < arr.length; j++)
if (arr[index] > arr[j]) index = j;
int temp = arr[index];
arr[index] = arr[i];
arr[i] = temp;
}
}
}
3.以k为分界的分治排序思想 O(N*logK)
上述两种做法不仅适用于这道题目,实际上适合很多类似的题目,这种算法拿出来并没有什么创新之处,真正能切合当前题目的算法会为我们带来更小的复杂度开支。比如这种复杂度为N*logK的算法大概思路是这样的,在快排中我们以一个数作为分界将数组一分为二,分别对各个部分进行递归,那么在这道题目中,我们所关心的是数组中最小的前k个数,也可以借鉴类似快排的思路:
对于一个分界值所分割的两部分存在两种情况,第一种情况是较小的部分的数量大于k,第二种情况是较小的部分数量n个但n
public static void main(String[] args) {
int[] arr = {1, 4, 3, 5, 7, 6, 2, 8, 9};
//模拟需要排序的数组
int k = 4;
//模拟需要返回的前k个最大数字
int res[] = kSAndRe(arr, k);
for (int i = 0; i < k; i++)
System.out.println(res[i]);
}
private static int[] kSAndRe(int[] arr, int k) {
int[] res = new int[k];
for (int i = 0; i < k; i++)
res[i] = -1;
keySort(arr, 0, arr.length - 1, k, res);
return res;
}
private static void keySort(int[] arr, int start, int end, int k, int[] res) {
if (start >= end || k <= 0)
return;
int index = start;
int i = start, j = end + 1;
while (true) {
while (arr[index] > arr[++i]) if (i == end) break;
while (arr[index] < arr[--j]) if (j == start) break;
if (i >= j)
break;
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
int temp = arr[index];
arr[index] = arr[j];
arr[j] = temp;
index = j;
if (index - start + 1 > k) keySort(arr, start, index - 1, k, res);
else {
for (i = 0, j = 0; j < index - start + 1; i++)
if (res[i] == -1) res[i] = arr[start + (j++)];
if (index - start + 1 == k) return;
else keySort(arr, index + 1, end, k - index + start - 1, res);
}
}
}
4.其他解题算法
这道题的思路还有很多,作为一道开放性的思考题,不适合被拿到oj上评判一个人的算法能力,对于这道题的其他解决方法,还有类似于:用2进制数表示分治讨论、用堆排序维护最小值数组等等算法。