唯品会峰值系统架构演变

 

 
摘要:在唯品会,用户来得越早,越能买到又便宜又好的东西,所以在大促一开始会涌入大量用户,形成系统流量峰值。本文总结了唯品会419时日志平台遇到的问题和解决方案,同时根据实践经验,整理了在面对峰值前要做的准备。

唯品会每年最大力度的促销活动在4月19日,就是419(For One Night),意在告诉唯品会用户只有这一晚有这么大的折扣力度(本文中用“大促”就指代419) 。唯品会是一个闪购网站,用户来得越早,越能买到又便宜又好的东西,所以在大促的一开始,会涌入大量用户,形成系统流量峰值。

本文总结了唯品会419时日志平台遇到的问题和解决方案,同时根据实践经验,整理了在面对峰值前要做的准备。

2013年419

唯品会的日志平台,包括消息中间件、计算和数据可视化。前两者和峰值系统相关度更大一些。在2013年419时,我们使用Flume来收集日志,RabbitMQ作为传输日志的消息中间件,用Storm和Redis进行计算,然后通过脚本将Redis的数据写入MySQL,前端从MySQL中获取数据做数据可视化。架构如图1所示。


图1  2013年日志平台架构

在这次419之前,我们对这个系统并不是很有信心。一个原因是刚开始做这块内容,很多工具都不够成熟。另一个原因是在大促之前,我们还在开发新功能,既没有稳定运行一段时间,也没有做容量规划之类的事情。

最后的结果确实如此,4月19日0点,大量用户进入唯品会购物,系统计算开始出现延迟,最初是1分钟,后面逐渐扩大到10分钟,最后由于雪崩效应,整个集群垮了。在分布式系统中,“雪崩效应”指的是系统中一个小问题会逐渐扩大,最后造成整个集群宕机。前面这个例子,一开始的计算延迟是1分钟,这在可以接受的范围内,但因为这个延迟,系统需要付出更多的代价去计算,如此恶性循环,数据延迟会越来越大,最后导致整个集群宕机。

在大促之后,我们进行了全面分析,发现这个系统的瓶颈在于RabbitMQ和Storm。

作为整个平台输送数据的管道,RabbitMQ的性能直接决定了后端消费数据系统的消费能力。整个平台就像是大炮,大炮发射再快,输送炮弹的速度跟不上都没用。这次大促中,RabbitMQ的性能出了问题。我们需要处理的日志量是每秒15万条左右,而我们使用RabbitMQ的环境下,每一台RabbitMQ服务器大约能达1.2万条日志每秒,由4台机器组成RabbitMQ集群,所以当流量暴涨时,RabbitMQ服务器负载会变得很高,而produce/consume速度变慢。在当时的情况下,我们并不能判断这个Queue的堵塞是由于下游的Storm消费得慢,还是RabbitMQ本身慢造成。

再看Storm。在分析Storm出问题的原因之前,先先介绍一下使用Storm计算的内容:一是根据用户访问日志计算PV/UV;二是根据Nginx日志计算各个域的访问量、响应时间和4xx/5xx数。由于Storm在各个计算节点之间无法共享数据(不像Spark有broadcast),我们只能借助Redis来做一个类似MapReduce中的Reduce功能。为了让大家能深入了解,下面详细介绍一下如何使用Storm计算这些数据。

PV

在Redis中有不同的key,如b2c_pv和mobile_pv,对Storm中得到的每条日志进行逻辑判断决定是b2c还是mobile访问,再使用Redis的incr操作(incr[key],表示将key对应的value加1,如果key不存在,则在这个操作前,会先置为0)。

UV

我们计算的是每5分钟的UV,方法很简单。在Redis中有一个DB专门用来计算UV,Storm将每个用户的cid(标识用户唯一身份的id)incr到DB中,这样能保证一个cid对应一个key。最后汇总通过Redis的“keys *”来获取DB中key的数目,这样就获取到了cid的数目。又因为我们计算的是5分钟的UV,所以还需要一个crontab,每5分钟将DB中的内容truncate掉。

计算Nginx日志

实际上,计算Nginx日志非常简单,就是分割和计算。将一条Nginx日志分割后,就能知道这次访问的状态码是什么,响应时间是多少。然后DB中会有不同的key,如domain是cart,那么cart域的响应时间在Redis DB里的key就是cart_resp_time,访问量就是cart_count,2xx数量就是cart_2xx_count。根据从日志获取的值,我们会使用Redis的incrby来操作(incrby和incr类似,incr是value加1,incrby可以指定增加的数字)。然后在计算metrics时,脚本先获取当前的cart_count,然后sleep 1秒,再获取一次cart_count,这两个的差值是这1秒钟内cart域的访问量。同样的方法,可以获取这1秒的响应时间,与访问量相除,就可以计算出这1秒的平均响应时间。

介绍完计算逻辑,可以了解到,Storm的处理逻辑非常简单,主要工作就是“分割日志”和“操作Redis计数”。

为了判断到底是RabbitMQ慢还是Storm慢,我们先将Storm停了,然后用一个Python脚本向Queue发送数据和消费Queue里的数据,这样来减小Producer和Consumer性能对RabbitMQ的性能影响。这样测试后发现,每台RabbitMQ的吞吐大概是1w条数据每秒,而且负载很高。后来,我们使用Erlang的HiPE特性(即High Performance Erlang),将性能提升20%,大概达到1.2w条数据每秒。但仍然不能满足我们的要求。我们要求达到15w msg/s,加上25%的冗余,此时需要15×(1+25%)/1.2≈16台服务器,比较多。再考虑到唯品会正处于快速增长期,目前是15w msg/s,很有可能明年就翻几番。使用RabbitMQ似乎不太符合我们的需求,因为在可预见的将来,需要大量服务器来支撑。此外,RabbitMQ对服务器的CPU消耗非常大。

RabbitMQ的消费者除了Storm外,还有Elastic-Search(ES)。使用ES来做日志的全文检索,包括Nginx日志和PHP错误日志,因为Nginx日志的计算只能帮助运维人员和开发人员定位到某个域出问题,再深入地分析,就要从出错时的日志入手了。我们的日志还会有一份全量流入HDFS,原本用日志的搜索直接从HDFS来获取,但发现用Hive查询速度非常慢,大约需要几分钟。ES是基于Solr的一个全文检索引擎,有一个很好用的前端Kibana。在这次大促中,由于前端的RabbitMQ挂了,所以ES没有受到很大的压力。

……

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
机器学习是一种人工智能(AI)的子领域,致力于研究如何利用数据和算法让计算机系统具备学习能力,从而能够自动地完成特定任务或者改进自身性能。机器学习的核心思想是让计算机系统通过学习数据中的模式和规律来实现目标,而不需要显式地编程。 机器学习应用非常广泛,包括但不限于以下领域: 图像识别和计算机视觉: 机器学习在图像识别、目标检测、人脸识别、图像分割等方面有着广泛的应用。例如,通过深度学习技术,可以训练神经网络来识别图像中的对象、人脸或者场景,用于智能监控、自动驾驶、医学影像分析等领域。 自然语言处理: 机器学习在自然语言处理领域有着重要的应用,包括文本分类、情感分析、机器翻译、语音识别等。例如,通过深度学习模型,可以训练神经网络来理解和生成自然语言,用于智能客服、智能助手、机器翻译等场景。 推荐系统: 推荐系统利用机器学习算法分析用户的行为和偏好,为用户推荐个性化的产品或服务。例如,电商网站可以利用机器学习算法分析用户的购买历史和浏览行为,向用户推荐感兴趣的商品。 预测和预测分析: 机器学习可以用于预测未来事件的发生概率或者趋势。例如,金融领域可以利用机器学习算法进行股票价格预测、信用评分、欺诈检测等。 医疗诊断和生物信息学: 机器学习在医疗诊断、药物研发、基因组学等领域有着重要的应用。例如,可以利用机器学习算法分析医学影像数据进行疾病诊断,或者利用机器学习算法分析基因数据进行疾病风险预测。 智能交通和物联网: 机器学习可以应用于智能交通系统、智能城市管理和物联网等领域。例如,可以利用机器学习算法分析交通数据优化交通流量,或者利用机器学习算法分析传感器数据监测设备状态。 以上仅是机器学习应用的一部分,随着机器学习技术的不断发展和应用场景的不断拓展,机器学习在各个领域都有着重要的应用价值,并且正在改变我们的生活和工作方式。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值