关闭

希尔排序算法思想

标签: 希尔排序算法排序算法
176人阅读 评论(0) 收藏 举报
分类:

希尔排序算法思想

把记录按下标的一定增量分组,对每组使用 直接插入排序算法 排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

希尔排序算法过程:

先取一个正整数gap


例如数组a[49, 38, 65, 97, 26, 13, 27, 49, 55, 4]

第1次 步长 gap = 10 / 2 = 5

分成了五组(49, 13) (38, 27) (65, 49) (97, 55) (26, 4),

每组排序后变成了(13, 49) (27, 38) (49, 65) (55, 97) (4, 26)。

第1次排序结果:13 27 49 55 4 49 38 65 97 26

第2次 步长 gap = 5 / 2 = 2

分成了2组(13,49,4,38,97) (27,55,49,65,26)

每组排序后变成了(4,13,38,49,97) (26,27,49,55,65)

第2次排序结果:4 26 13 27 38 49 49 55 97 65

第3次 步长 gap = 2 / 2 = 1

分为一组,直接插入排序后,数组有序。


希尔排序的时间复杂度与增量序列的选取有关,例如希尔增量时间复杂度为O(n²),而Hibbard增量的希尔排序的时间复杂度为O(n^(3/2)),希尔排序时间复杂度的下界是n*log2n,希尔排序时间复杂度O(Nlog2N),空间复杂度O(1)。希尔排序不是稳定排序算法。

算法实现

希尔排序算法伪代码

//希尔排序
input: an array a of length n with array elements numbered 0 to n − 1
gap ← round(n/2)
while gap > 0 do:    
    for i = gap to n − 1 do:        
        temp ← a[i]        
        j ← i        
        while j ≥ gap and a[j − gap] > temp do:            
            a[j] ← a[j − gap]            
            j ← j − gap       
        a[j] ← temp    
    gap ← round(gap / 2)

Test

用希尔排序算法对数组arr[10] = {8, 5, 10, 12, 7, 6, 15, 9, 11, 3}从小到大排序。

@Test
    public void test(){
        Integer[]  arr= {8, 5, 10, 12, 7, 6, 15, 9, 11, 3};
        for (int group = arr.length / 2; group > 0; group /= 2) {
            for (int i = group; i < arr.length; i++) {
                for (int j = i - group; j >= 0; j -= group) {
                    if (arr[j] > arr[j + group]) {
                        int temp = arr[j];
                        arr[j] = arr[j + group];
                        arr[j + group] = temp;
                    }
                }
            }
        }
        for(Integer it : arr){
            System.out.print("  "+it);
        }
    }

输出

  3  5  6  7  8  9  10  11  12  15
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:74637次
    • 积分:2129
    • 等级:
    • 排名:第18600名
    • 原创:124篇
    • 转载:59篇
    • 译文:1篇
    • 评论:5条