题意:输入一串斐波拉契数的前缀,求包含这个前缀的最小斐波拉契数的编号。
思路:
1、先生成100000个斐波拉契数,用字符串实现高精度的加法。因数据要求前缀长度最大为40,所以可以少存几位,因为精度问题,所以存50位。
2、读入前缀,查找最小的。
这里顺序查找的复杂度很高,会超时,然后我就懵逼了。
网上找题解,学习一种叫字典树的东西,大致就是处理公共前缀、快速查找之类的。
我的字典树用数组实现,下次再尝试写下指针吧(从来没尝试过指针这玩意)。
注意:数据规模是小于(smaller than)100000,不是小于等于!
代码:
#include<cstdio>
#include<iostream>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
struct NODE{
int x;
int son[10];
NODE(int one){
x=one;
for(int i=0;i<=9;i++){
son[i]=(1<<30);
}
}
};
vector<NODE> vec;
string f[100005];
void make(int i,string& str){
string a=f[i-2],b=f[i-1];
if(a.size()<b.size()){
a="0"+a;
}
bool Add=false;
int Size=a.size()-1;
for(int j=min(Size,50);j>=0;j--){
int x=a[j]-'0'+b[j]-'0'+Add;
if(x>=10) x%=10,Add=true;
else Add=false;
str=(char)(x+'0')+str;
}
if(Add==true) str="1"+str;
}
void add(int id,string& str){
int now=0;
for(int i=0;i<str.size();i++){
int x=str[i]-'0';
if(vec[now].son[x]==(1<<30)){
vec[now].son[x]=vec.size();
vec.push_back(NODE(id));
}
now=vec[now].son[x];
}
}
int find(string str){
int now=0;
for(int i=0;i<str.size();i++){
int x=str[i]-'0';
if(vec[now].son[x]==(1<<30)){
return -1;
}
now=vec[now].son[x];
}
return vec[now].x;
}
int main() {
vec.push_back(NODE(0));
f[0]=f[1]="1";
add(1,f[1]);
for(int i=2;i<100000;i++){
make(i,f[i]);
add(i,f[i]);
}
int m,T=0;
scanf("%d",&m);
while(++T&&T<=m){
string x;
cin>>x;
int y=find(x);
if(x=="1") y=0;
printf("Case #%d: %d\n",T,y);
}
return 0;
}