BZOJ3781 小B的询问 题解&代码 【附莫队总结】

本文详细介绍了BZOJ3781题目——小B的询问的解决方案,重点讲解了如何运用莫队算法来解决区间查询问题。通过将L按大小分成近似于sqrt(n)块并排序,实现了O(n×sqrt(n))+O(sqrt(n)×n)的时间复杂度。同时,文章强调了莫队算法适用于区间多次查询且区间无修改的情况,以及如何快速从状态(L,R)得出(L+1,R)和(L,R+1)的状态。
摘要由CSDN通过智能技术生成

莫队这种低端局折腾了将近两天,自己也是有点浪
主要还是分块后的处理…边界算错好多次orz

题意:给出一个序列包含n个1~k间的整数。共询问M个区间[L,R],求Σc(i)²(i∈[1,k]),c(i)表示i在[L,R]中的重复次数。
题解:
莫队,其实是暴力分块【平面最小曼哈顿生成树宝宝不会!别问我!
首先我们注意到区间没有被修改过,那么我们可以利用cdq分治的离线思路【为什么扯到了自己还没写过的奇怪东西】…好的我们确认了这道题可以离线。
离线就意味着我们可以随意对询问进行排序,怎么复杂度低怎么来。按照L排序?R?都不科学。
正确的排序方法!是!将L按大小分成近似于sqrt(n)块,将块内的R按照大小排成顺序!
这样的复杂度是什么呢?
每个块内的L由一个询问查询向下一个询问时,最多O(sqrt(n))(跨块进行计算的时候同样是O(sqrt(n)))
每个块内的R下一问查询时,其和最多O(n)(跨块进行计算时是一个新的O(n))
这样就得到了一个O(n×sqrt(n))+O(sqrt(n)×n)的优秀算法

莫队的适用范围是:区间多次查询 && 区间无修改 && 由状态(L,R)可以O(1)得出状态(L+1,R)和(L,R+1)

这道题不用说了吧…O(1)随意地推个公式就行辣

/***
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值