莫队这种低端局折腾了将近两天,自己也是有点浪
主要还是分块后的处理…边界算错好多次orz
题意:给出一个序列包含n个1~k间的整数。共询问M个区间[L,R],求Σc(i)²(i∈[1,k]),c(i)表示i在[L,R]中的重复次数。
题解:
莫队,其实是暴力分块【平面最小曼哈顿生成树宝宝不会!别问我!
首先我们注意到区间没有被修改过,那么我们可以利用cdq分治的离线思路【为什么扯到了自己还没写过的奇怪东西】…好的我们确认了这道题可以离线。
离线就意味着我们可以随意对询问进行排序,怎么复杂度低怎么来。按照L排序?R?都不科学。
正确的排序方法!是!将L按大小分成近似于sqrt(n)块,将块内的R按照大小排成顺序!
这样的复杂度是什么呢?
每个块内的L由一个询问查询向下一个询问时,最多O(sqrt(n))(跨块进行计算的时候同样是O(sqrt(n)))
每个块内的R下一问查询时,其和最多O(n)(跨块进行计算时是一个新的O(n))
这样就得到了一个O(n×sqrt(n))+O(sqrt(n)×n)的优秀算法
莫队的适用范围是:区间多次查询 && 区间无修改 && 由状态(L,R)可以O(1)得出状态(L+1,R)和(L,R+1)
这道题不用说了吧…O(1)随意地推个公式就行辣
/***