基于内容可变长度分块Content Defined Chunking

本文介绍了内容定义分块(Content-Defined Chunking, CDC)技术,这是一种提高磁盘使用率和节省空间的方法。CDC属于可变分块技术,通过滑动窗口及哈希值匹配来确定数据块边界,即使文件部分更新,也能保持大部分块不变,从而提高重复数据的检测效率。

最近在研究开源网络云盘代码,发现他们在文件存储时用到一种文件切割复用的技术,能大大提高磁盘使用率,节省空间

在网上找了些这个技术(Content Defined Chunking)的一些说明。


基于内容可变长度分块

1,简介
重复数据块检测技术分为,固定分块检测技术(Fixed-Sized Partition, FSP),可变分块检测技术(Variable-Sized Partition, VSP),滑动块技术(Sliding Block)。
固定分块将数据流按固定的长度分块,实现很简单,但某一处数据的变化将导致之后的所有分块都发生变化,从而无法进行匹配。因此,固定分块技术在实际中应用较少。可变分块技术则可弥补固定分块技术的这一局限性,能更加灵活的找出重复数据。基于内容可变长度分块(Content-Defined Chunking, CDC)是可变分块(Variable-Sized Partition, VSP)的一种。

2,理论基础
CDC的理论基础是rabin fingerprint,请参照Michael O. Rabin的Fingerprinting by Random Polynomials. 

3,具体实现
文件被分为长度可变的数据块,数据块的长度在一个规定的最小值和最大值之间。可变长度的数据块用一个滑动窗口来划分,当滑动窗口的 hash 值与一个基准值相匹配时就创建一个分块,这样数据块的尺寸就可达到一个期望的分布。Rabin’s fingerprint 预先定义两个整数 D 和 r(r<D) 一个大小为 w 的固定窗口在文件上滑动。假如在位置 k,固定窗口内数据的 hash 值为 f,如果f mod D = r,则该位置为数据块的一个边界。重复这个过程,直至整个文件都被分块。



实现起来也不是很复杂,但需要对每一次滑动都计算依次窗口内的hash值,计算量增加。另外,如果选择的D和r不合适,会导致窗口过小(很容易匹配上)或过大(很难匹配上)

4,与固定分块技术的对比
现在有一串数据D0:(ABCDEFGHIJKLMNOP),以固定分块为(ABCD | EFGH | IJKL | MNOP ),假如中间某部分数据发生了变化,数据变为D1:(ABCDEF22GHIJKLMNOP),那么固定分块为(ABCD | EF22 | GHIJ | KLMN | OP),除了第一块,其他所有的块都无法完成匹配。
如果采用CDC,假设初始分块也是(ABCD | EFGH | IJKL | MNOP),那么意味着在D, H, L这三个窗口内,是符合fmodD=r的条件的,当数据发生改变时,由于DHL这三个窗口并未发生改变,他们依然被认定为边界,那么分块有可能变成(ABCD | EF22GH | IJKL | MNOP),这样,除了发生改变的第二个块不能完成匹配外,其他三个数据块的匹配不会收到影响。

CDC其实早已应用广泛,其最早是用在低带宽环境的数据传输与同步,如rsync即使用CDC技术,来检测本次备份与上次备份之间的差异,从而达到只传递差异部分的目的。

参考文献
1,低带宽环境下基于混合方法的文件复制算法*
徐旦 1+, 生拥宏 2, 鞠大鹏 2 ,吴建平 1,汪东升 2,3
2,Michael O. Rabin Fingerprinting by Random Polynomials. 
3,基于Rabin指紋方法的URL去重算法


转自: http://blog.chinaunix.net/uid-25871104-id-3084904.html

<think>好的,我现在要处理用户关于基于内容可变长度分块(CDC)确定分块边界的问题。首先,我需要回忆CDC的基本概念和常见方法。根据引用[1],CDC属于可变分块技术,用于解决固定分块因数据变化导致的连锁反应问题。用户想知道具体的边界确定策略或算法,所以需要详细解释这些方法。 首先想到的是滚动哈希法,比如Rabin指纹算法。这部分需要解释算法的工作原理,比如如何通过滑动窗口计算哈希值,并设置模数来确定断点。可能需要举例说明,比如当哈希值满足特定条件时分割块。这部分需要确保术语准确,比如模数T的选择,以及如何避免重复计算哈希值。 然后是内容特征法,比如使用字节模式或统计特征。例如,当检测到特定字节序列时分割,或者利用数据的熵变化。这部分需要结合实际应用场景,比如文本中的换行符或二进制文件中的结构变化。 接下来是双阈值法,结合固定大小和内容特征,避免块过大或过小。比如设置最小和最大块尺寸,当达到最大尺寸还未触发内容特征时强制分割。需要说明这种方法如何平衡灵活性和稳定性。 实现部分要分步骤,比如滑动窗口处理、哈希计算、断点检测、动态调整参数等。可能需要提到实际系统中的优化,比如并行处理或预计算。同时要引用相关的引用资料,比如引用[1]提到的CDC属于VSP,而引用[2]中的路径规划可能与分块策略在应用上的关联。 最后生成相关问题,需要涵盖算法比较、性能优化、应用场景等。例如,CDC与固定分块的优缺点,哈希算法的选择影响,动态调整参数的策略,以及在大数据中的应用。 需要确保回答结构清晰,使用中文,数学公式用$...$,独立公式用$$...$$。检查是否有遗漏的要点,比如是否提到其他算法如Buzhash,或者不同方法的优缺点比较。同时注意引用标记的正确位置,例如在讨论CDC时引用[^1],在实现步骤提到路径规划时引用[^2]。 现在组织内容,确保逻辑连贯,技术细节准确,同时符合用户要求的格式和引用规范。</think>在基于内容可变长度分块Content-Defined Chunking, CDC)中,确定分块边界的核心策略是通过数据内容本身的特征动态划分块,而非固定长度。以下是主要方法与实现细节: --- ### **1. 分块边界的核心策略** #### **(1) 滚动哈希法(Rabin指纹算法)** - **原理**:对数据流滑动窗口内的内容计算哈希值,当哈希值满足特定条件(如模余为零)时,标记为分块边界。 - **数学形式**:设滑动窗口大小为$w$,哈希函数为$H$,模数为$T$,当满足 $$ H(data[i:i+w]) \mod T = 0 $$ 时,将位置$i$作为分块边界[^1]。 - **优势**:哈希值的均匀分布特性可保证分块长度近似符合预期,且对局部修改敏感度低。 #### **(2) 内容特征法** - **字节模式匹配**:通过检测特定字节序列(如换行符、文件头标识)作为边界。例如,文本数据可能以段落分隔符分块。 - **统计特征**:利用数据熵、频率分布等统计指标的变化点作为边界。例如,当数据局部熵显著变化时触发分块。 #### **(3) 双阈值法** - 结合固定范围与内容特征,设置最小和最大块尺寸(如4KB-64KB),若在最大尺寸内未触发内容特征,则强制在最大长度处分块。此方法平衡了灵活性与稳定性[^1]。 --- ### **2. 实现步骤** 1. **滑动窗口处理**:逐字节滑动窗口,计算当前窗口的哈希值。 2. **哈希匹配**:检查哈希值是否满足边界条件(如模余为零)。 3. **断点检测**:若匹配成功,记录当前位置为分块终点,并重置窗口。 4. **动态调整**:根据数据流特征动态调整模数$T$,以控制分块大小分布。 **示例代码(简化逻辑)**: ```python def find_boundaries(data, window_size=48, mod=256): boundaries = [] for i in range(len(data) - window_size + 1): window = data[i:i+window_size] hash_val = compute_rabin_hash(window) if hash_val % mod == 0: boundaries.append(i + window_size) return boundaries ``` --- ### **3. 关键优化** - **哈希算法选择**:Rabin指纹因计算高效且冲突率低,成为CDC的主流选择。 - **预计算加速**:通过增量计算避免重复哈希运算,例如每次滑动窗口时仅更新头尾差异部分。 - **自适应分块**:根据历史分块大小动态调整模数$T$,使块长更接近目标均值(如8KB)。 --- ### **4. 应用场景** - **去重存储系统**:如备份工具(如rsync)、分布式文件系统(如Ceph),通过CDC减少重复数据存储。 - **网络传输优化**:分块后仅传输差异块,提升增量同步效率。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值