OpenCV HOGDescriptor 参数图解

本文探讨了OpenCV中的HOGDescriptor类在图像特征提取中的应用,特别是行人检测。介绍了HOGDescriptor的构造函数参数,如winSize、blockSize、blockStride、cellSize和nbins,并通过示意图解释了这些参数的含义。nBins表示每个胞元内统计的梯度方向数,影响描述子维度的计算。参考了Histograms of Oriented Gradients for Human Detection, CVPR 2005的研究。" 109061027,9175515,系统重装后的Node.js环境变量配置,"['nodejs', '环境变量', 'debug', 'VSCode', '编码']
摘要由CSDN通过智能技术生成

      最近要做图像特征提取,可能要用下HOG特征,所以研究了下OpenCV的HOG描述子。OpenCV中的HOG特征提取功能使用了HOGDescriptor这个类来进行封装,其中也有现成的行人检测的接口。然而,无论是OpenCV官方说明文档还是各个中英文网站目前都没有这个类的使用说明,所以在这里把研究的部分心得分享一下。

      首先我们进入HOGDescriptor所在的头文件,看看它的构造函数需要哪些参数。 

    CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
    	cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
        histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true), 
        nlevels(HOGDescriptor::DEFAULT_NLEVELS)
    {}
    
    CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
                  Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
                  int _histogramNormType=HOGDescriptor::L2Hys,
                  double _L2HysThreshold=0.2, bool _gammaCorrection=false,
                  int _nle
评论 82
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想主义帕鲁

感恩有你,日久弥新。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值