机器学习100天(一):001 开发环境搭建

本文介绍了为何选择Anaconda作为机器学习开发环境,详细阐述了Anaconda的下载、安装及使用过程,强调其集成众多数据科学包、支持Python及多种平台的优势,帮助初学者快速搭建高效开发环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习实战需要编写代码,选择一个好的 IDE 能大大提高我们的开发效率。基于 Python 的广泛使用,我们给大家介绍当前最流行的机器学习开发工具包:Anaconda。

一、为什么选择 Anaconda

我们知道 Python 是人工智能的首选语言。为了更好、更方便地使用 Python 来编写机器学习相关程序,可以使用集成开发环境或集成管理系统,最流行的比如 PyCharm 和 Anaconda。本文我推荐使用 Anaconda。

之所以选择 Anaconda,是因为 Anaconda 作为 Python 的一个集成管理工具,它把 Python 做相关数据计算与分析所需要的包都集成在了一起,我们只需要安装 Anaconda 就行了。Anaconda 是一个打包的集合,里面包含了 120 多个数据科学相关的开源包,在数据可视化、机器学习、深度学习等多方面都有涉及。不仅可以做数据分析,甚至可以用在大数据和人工智能领域。另外,安装它后就默认安装了 Python、IPython、Jupyter Notebook 和集成开发环境 Spyder 等等。总之一句话,安装 Anaconda 让我们省去了大量下载模块包的时间,更加方便。

在这里插入图片描述

二、下载 Anaconda

Anaconda 完全支持 Windows、macOS、Linux 三种平台,目前已支持 Pyt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红色石头Will

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值