栅格那点儿事(四D)

部署运行你感兴趣的模型镜像

统计值与空值

 

在上一篇的内容里反复提到了一个统计值。那这个统计值是怎么来的,具体是干嘛用的呢?

 

统计值主要就是用于栅格数据的显示和重分类,顾名思义就是一个波段中所有像元值的一个统计信息,最大值,最小值,中值,标准差等等。这个信息我们可以通过ArcCatalog中查看任一栅格数据的属性,或者在ArcMap中查看栅格属性的Source页中得到,不记得的可以参见下图。


 

 

仔细看一下上面这张图,我们可以得到三个信息,

是统计值是按照波段计算的。展开统计值会看到按照波段数分成了多个组(Band_1,Band_2…),每个波段的统计值记录在对应的波段信息下。

二是统计值中还记录了分类信息(Classes)。在查看土地利用分类图时,直接查看这个信息就可以知道图中一共有几类地类。

三是计算统计值也有参数可以设置,Skipped Value和IgnoredValue。Skipped Value默认值是1,也就是所有行列的象元都参与计算。这个参数在什么时候设置呢?既然这个值表示两次采样的间隔,那么在数据量非常大的时候,比如几十G或者更大的数据的时候,可以设置成100来减少参与运算的象元从而加速计算的时间。

 

对于一个没有统计值的栅格,在首次计算后,就会生成那个与栅格数据如影随形的.aux文件中。这个文件也用来存储色彩映射表,统计数据,直方图,金字塔文件的指针,坐标系等信息。

如果得到的一个栅格数据没有统计值的属性,也可以正常加载,只是在进行拉伸的时候,会提示您的数据没有统计值,点击是就可以自动计算了。如果数据比较大的情况下,会花费很长的时间。所以建议加载前,先使用GP工具Calculate Statistics来进行计算。如果数据中使用极小值作为空值时,也建议使用工具计算以得到更好的渲染效果。

 

空值

空值就是传说中的NoData了。也就是在一个栅格数据中,除了符合比特深度(Pixel Depth)的值之外,用于标记此处无数据的值----就是空值。产生空值的原因有很多种,有可能是在数据采集的时候,传感器没有记录下某个位置的反射值,或者是由于噪声。但是最常见的,则是对卫星影像做了地理配准后,影像的覆盖范围变为菱形/平行四边形所造成的边角是黑色的情况。

 

空值到底是个什么值?

由于不同的软件处理影像时,会使用不同的值来标记这个数据为空的值,有的会使用0值,有的会使用极小值。需要注意的是,在ArcGIS中,0值是一个有效值而不是一个空值。出于这个原因,在渲染这类影像的时候,ArcGIS会将0值渲染出来,而不是作为空值处理成透明色。


那么我们如何消除这个黑边的问题呢?

在9.3.1之后的版本中,我们可以在图层属性Symbology页下看到这样的一个设置:Display Background value…as…。通过输入0,0,0,以及将颜色设置成透明,就可以达到让黑边消失的渲染效果。


 


这是对单一的栅格数据的,如果使用的是Mosaic Dataset这种数据模型呢,ArcGIS中提供了一个解决Mosaic Dataset中黑边问题的工具Define Mosaic Dataset NoData。在工具中可以对每一个波段单独设置空值,完成后就可以得到理想的黑边变透明的效果。

  

或者呢,为了从根本上解决问题,有些筒子喜欢通过导出的方式将黑边设置为空。具体操作就是在Export Data的时候,在NoData的选项中输入0,0,0。但是,BUT,这样是完全达不到预计的效果的。到导出数据是,nodata的设置时针对某一个像元值的,不管是RGB中任何一个波段中的值,都会被设置成空值。也就是说,如果有这样一个位置上的RGB值为56,146,0,其实伦家是绿色的,但是在导出的结果影像中就变成一个洞了。使用Set Null工具也会有类似的结果。这是由于ArcGIS的栅格处理多数是处理单波段的数据,目前也还没有更新到可以同时处理多个波段的数据…所以这个办法要慎用啊…


 


到当前的版本(10.0)为止,从根本上解决多波段的影像数据的黑边的唯一有效的方式只有裁剪。或者呢,在运行Set Null的时候,在环境变量中设置Mask也是可以的。

 

说起裁剪呢,又会引出一个与NoData相关的问题了。一般裁剪栅格时,大家都会使用Clip,或者是Extract by Mask工具。可能会有人注意到,使用Clip工具,在工具的界面中会有设置Nodata值的位置,而Extract by Mask中则没有。再看得到的结果呢,对于一个8bit的栅格数据,clip的结果仍然是8bit,而extract的结果就会变成16bit。原因就是执行clip时,不管mask是什么形状,工具中只会使用到envelope的坐标,这样得到的结果就是一个标准的矩形。而使用extract工具时,为了保留mask的准确的形状,在envelope内mask外的值需要标记为NoData,而ArcGIS中使用的是一个极大值(一般是65535),导致的结果就是会使用一个16bit的栅格来记录这个裁剪的结果。

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

### 如何在 ENVI 中处理栅格数据的缺失值 ENVI 是一款功能强大的遥感图像处理软件,能够有效解决栅格数据中的缺失值问题。以下是关于如何使用 ENVI 来处理这类问题的具体方法。 #### 使用 ENVI 的重采样和插值功能 ENVI 提供了多种内置工具来应对栅格数据中的缺失值问题。其中一种常见方式是通过 **重采样** 和 **空间插值算法** 对缺失区域进行估计并填充。这种方法类似于 GEE 年内数据填充法的思想[^2],即利用周围已知像素的信息推算出知像素的数值。 对于具体的实施步骤,在 ENVI 软件界面中可以找到 `Interpolate` 或者类似的选项用于执行二维平面内的线性/最近邻域等多种类型的插值操作。此外还可以考虑设置掩膜文件(mask),以便更精确地定义哪些像元需要被替换掉。 #### 应用时间序列分析填补长期变化趋势下的丢失信息 当面对长时间跨度的数据集时(如同引用提到的情况),除了简单的单一时相修复外,还应该考虑到不同季节间可能存在的规律模式差异影响最终效果的好坏程度。因此也可以尝试引入更多维度上的关联变量作为辅助因子参与到整个重建过程中去——这正是基于年内统计数据来进行跨年度综合评估的核心理念之一[^1]。 下面给出一段 Python 脚本示例代码展示如何调用 ENVITask 实现基本的空间插补逻辑: ```python import envi task = envi.Task('SpatialInterpolation') task.parameters.input_raster = 'path_to_your_input_file' task.parameters.output_raster = 'path_for_output_result' task.parameters.method = 'LINEAR' # 可选参数如 CUBIC, NEAREST Neighbor etc. result = task.run() print(result.status) ``` 以上脚本片段展示了怎样配置一个名为 Spatial Interpolation 的任务实例,并指定输入输出路径及相关计算方法等必要属性后再运行它完成目标转换过程。 #### 结合外部模型增强预测准确性 值得注意的是,在某些复杂场景下单纯依赖本地领域知识或许不足以达到理想精度水平;此时可进一步探索集成机器学习或者深度神经网络架构到工作流当中,从而充分利用海量样本特征挖掘潜在联系提升整体表现力。 ---
评论 8
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值