js(含Jquery) 在前台时间问题(格式与比较(包含闰年与非闰年))

function getTime(tb) {   //判断输入的内容是否符合yyyy.MM.dd 格式

        var arr1 = $("input[id*='" + tb + "']").val().toString().split(".");
        if (arr1.length != 3) {
            $("input[id*='" + tb + "']").focus();
            alert("输入的时间格式不对!/n/n正确格式如:(2009.09.09) ");
            return false;
        }
        if ((1 <= arr1[2] && arr1[2] <= 31) && (1 <= arr1[1] && arr1[1] <= 12) && (arr1[0] > 1880)) {
            if (new Date(arr1[0], 2, 0).getDate() == 29) {
                if (arr1[1] == 2 && arr1[2] > 29) {
                    $("input[id*='" + tb + "']").focus();
                    alert("输入的时间不对!闰年二月没有超过29号的!");
                    return false;
                }
            }
            else {
                if (arr1[1] == 2 && arr1[2] > 28) {
                    $("input[id*='" + tb + "']").focus();
                    alert("输入的时间不对!非闰年二月没有超过28号的!");
                    return false;
                }
            }
            return new Date(arr1[0], arr1[1], arr1[2]);
        }
        else {
            $("input[id*='" + tb + "']").focus();
            alert("输入的时间不对!/n/n年份要大于1880,月份要大于1小于12,日号要大于1小于31");
            return false;
        }
    }

/*****两个格式正确时间的比较*****/
    function CompareTime() {
        var time1, time2;
        if ($("input[id*='tbPrintTime1']").val().trim() != "") {  

            time1 = getTime("tbPrintTime1");       //判断格式
            if (time1 == false)
                return false;
        }
        if ($("input[id*='tbPrintTime2']").val().trim() != "") {
            time2 = getTime("tbPrintTime2");      //判断格式
            if (time2 == false)
                return false;
        }
        if ($("input[id*='tbPrintTime1']").val().trim() != "" && $("input[id*='tbPrintTime1']").val().trim() != "") {
            if (time1.getTime() > time2.getTime()) {
                $("input[id*='tbPrintTime1']").focus();
                alert("结尾时间不能早于开始时间!");
                return false;
            }
            else
                return true;
        }
    }

有问题可留言!!!

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值