【NOIP 模拟题】掷骰子(dp)

原创 2016年08月28日 14:43:04

掷骰子(dice.cpp)

【问题描述】

    太郎和一只兔子正在玩一个掷骰子的游戏。有一个N个格子的长条棋盘,太郎和兔子轮流掷一个M面的骰子,骰子M面分别是1到M的数字,且掷到每一面的概率是相同的,掷到几,就往前走几步,当谁走到第N格时,谁就获胜了。游戏中还有一个规则“反弹”,就是当一位选手走到N格外时,他就会后退(就像飞行棋进营一样)。

假设现在一位选手在A格,当他掷出B时:1)若A+B<N,走到A+B格;2)若A+B=N,走到第N格,获胜;3)若A+B>N,走到N-(A+B-N)格。

  假设现在太郎和兔子分别在x格、y格,接下来是太郎掷骰子,太郎想知道他赢得比赛的概率是多少。

【问题输入】

    一行4格整数N、M、x、y。

【问题输出】

    一行一个小数,表示太郎获胜的概率(保留六位小数)

【样例输入】

    10 6 1 1

【样例输出】

    0.541725

【数据范围】

    30%的数据:10<=N<=100;

    100%的数据:10<=N<=2000,M,x,y<=n-1。

————————————————————————————————

【题解】【dp】

【f[i][j]表示A在第i格,B在第j格时,A获胜的概率。特别的:若i=n或j=n时,概率是1或0】

【分四种情况考虑:

 [1)若i+m<=n、j+m<=n,即i、j都不能一步获胜]  

      

(A从走到i+1-i+m这之间的位置的可能性都是均等的,都是1/m,同理,B从走到j+1-j+m这之间的位置的可能性都是1/m,所以每一个f[i'][j']出现的概率都是1/(m²))

【2)i+m<=n、j+m>n [A不能一步到终点,B可能一步到终点]】

  

j只有1中可能上次从n转移过来,j共有m中取值;i也有m种取值,所以共有m²种可能,再加上i这一步可以到终点的一种可能性

【3)i+m>n,j+m<=n[A可能一步到终点,B不可能一步到终点]


(这种情况下,与第2种情况相似)

【4)i+m>n,j+m>n[A、B都有可能一步到终点]】

   在这种情况下,因为有反弹,soA、B的位置只可能在[n-m+1,n]中,两人一步到终点的几率都是1/m,

    那么,A先到n的可能就是

                             

 等比数列求和:

                                

 化简得:

                                

【5)最后,还有一点,若i=n-m,当i'=j=n的概率为1】

。 

[转自: http://blog.csdn.net/lyd_7_29/article/details/52245309]

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m,x,y;
double f[2010][2010];//f[i][j]表示A在第i格,B在第j格时,A获胜的概率 
inline double SUM(int x1,int y1,int x2,int y2)
{
	return (f[x1][y1]-f[x1][y2]-f[x2][y1]+f[x2][y2]);
}
int main()
{
	freopen("dice.in","r",stdin);
	freopen("dice.out","w",stdout);
	int i,j;
	scanf("%d%d%d%d",&n,&m,&x,&y);
	for(i=n;i>0;--i)
	 for(j=n;j>0;--j)
	  {
	  	f[i][j]=f[i+1][j]+f[i][j+1]-f[i+1][j+1];
	  	if(i==n||j==n) {f[i][j]+=(i==n); continue;}//有一个已到终点 
	  	if(i<=n-m&&j<=n-m) {f[i][j]+=SUM(i+1,j+1,i+m+1,j+m+1)/m/m; continue; }//A、B都不能一步到终点 
	  	if(i<=n-m&&j>n-m) {f[i][j]+=((m-1)*SUM(i+1,j,i+m+1,j+1)+(i+m==n))/m/m; continue;}//A不能一步到终点,B可能一步到终点 
	  	if(i>n-m&&j<=n-m) {f[i][j]+=((m-1)*SUM(i,j+1,i+1,j+m+1)+m)/m/m; continue; }//A可能一步到终点,B不能一步到终点 
	  	if(i>n-m&&j>n-m) {f[i][j]+=1.0*m/(2*m-1); continue;}//A、B都可能一步到终点 
	  }
	printf("%.6lf\n",SUM(x,y,x+1,y+1));
	return 0;
}


版权声明:本文为博主原创文章,转载请注明出处:http://blog.csdn.net/reverie_mjp

相关文章推荐

JZOJ【3072】【NOIP2012模拟10.31】掷骰子

Description 太郎和一只免子正在玩一个掷骰子游戏。有一个有N个格子的长条棋盘,太郎和兔子轮流掷一个有M面的骰子,骰子M面分别是1到M的数字.且掷到任意一面的概率是相同的.掷到几.就往前走几...

JZOJ3072. 【NOIP2012模拟10.31】掷骰子

Description太郎和一只免子正在玩一个掷骰子游戏。有一个有N个格子的长条棋盘,太郎和兔子轮流掷一个有M面的骰子,骰子M面分别是1到M的数字.且掷到任意一面的概率是相同的.掷到几.就往前走几步....

NOIP模拟题[dfs][DP]

深入思考,仔细读题,抽象化问题本质,寻找相同点。 DP的话,思考一种可以完美概括影响又没有多存无意义信息的表示。 所以要分析什么信息对后来的计算有用。T1: 题意: 判断一棵子树所有节点的编号...

noip模拟题 小奇2 by hzwer[DP][路径压缩][分类讨论][位运算]

这么颓下去,迟早要完。这套题只考了2h,感觉还不错,T2做过类似的所以A了,T1和T3基本上也没什么大问题,关键就是要深入挖掘问题特质,学会分类讨论(很多题都可以剪掉大量的枝,比如T1,小奇1的T3,...

【NOIP 模拟题】[T2]拯救紫萱学姐(kmp+树形dp)

逢吟知己若,一任两西东

【noip模拟题】[dp][二分][树链剖分][hdu5029][线段树]

T1 描述 给定3个字符串,求它们的最长公共子序列。 输入 第一行一个整数n,表示三个字符串的长度 接下来三行,每行是一个长度为n只包含小写字母的字符串。 ...

NOIP模拟题 2016.9.3 [数论] [逆序对] [树状数组] [树形dp]

强迫症 问题描述 人行道铺着两行地砖,第一行每块的长度是A/B,第二行每块的长度是X/Y。两行砖块 第一块的一边是对齐的。 作为一个强迫症患者,看到这样的地砖你很不爽,于是就想知道,最少隔多少...

NOIP模拟题 2016.11.17 [数论] [数位DP] [扫描线] [线段树]

T1: 题意:求[L,R]内素数的个数。预处理O(sqrt(n))个素数,然后筛法求素数,平移一下。#include #include #include #include #include #inc...

NOIP模拟题 2016.10.5 [Trie] [数学] [二分答案] [杂题] [复杂状态DP]

T1: 题意:求序列中两两取& | ^的最大值。。这道题相当于三道题。。XOR就是Trie树上贪心即可,注意一开始不可以加入0这个串,并且插入a[1]后从i=2开始匹配。 另外,匹配的时候两种写法...

【NOIP模拟题】【贪心】【动态规划DP】2016.11.12第二题题解

B 这道题有两种解法,贪心和DP。 1.贪心 我们先将正数合并,负数记录,当取不下时交换最小的负数#include #include #include #include #include #in...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)