HDU1233 还是畅通工程(最小生成树模板题,Prime,kruskal算法)

本文通过一道关于构建最小公路总长度的问题,介绍了两种求解最小生成树的经典算法——Kruskal算法和Prim算法,并提供了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

还是畅通工程

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 43194    Accepted Submission(s): 19689


Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
 

Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
 

Output
对每个测试用例,在1行里输出最小的公路总长度。
 

Sample Input
  
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
 

Sample Output
  
3 5
Hint
Hint
Huge input, scanf is recommended.
 

Source
 
思路:

就是最小生成树的模板题,看一下前面两篇介绍的就行

代码1(kruskal):

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <string>
#include <iostream>
#include <stack>
#include <queue>
#include <vector>
#include <algorithm>
#define mem(a,b) memset(a,b,sizeof(a))
#define N 5000+20
#define M 100000+20
#define MOD 1000000000+7
#define inf 0x3f3f3f3f
using namespace std;
int n;
struct node
{
    int u;
    int v;
    int w;
} map[N];
int f[N],sum,cnt;
int getf(int v)
{
    if(f[v]==v)
        return v;
    else
    {
        f[v]=getf(f[v]);
        return f[v];
    }
}
int mix(int v,int u)
{
    int t1=getf(v);
    int t2=getf(u);
    if(t1!=t2)
    {
        f[t2]=t1;
        return 1;
    }
    return 0;
}
bool cmp(node x,node y)
{
    return x.w<y.w;
}
void init()//并查集初始化
{
    for(int i=1; i<=n; i++)
        f[i]=i;
}
int main()
{

    while(~scanf("%d",&n)&&n)
    {
        sum=0;
        cnt=0;
        mem(f,0);
        int m=(n*n-n)/2;
        for(int i=1; i<=m; i++)
            scanf("%d%d%d",&map[i].u,&map[i].v,&map[i].w);
        sort(map+1,map+m+1,cmp);
        init();
        for(int i=1; i<=m; i++)
        {
            if(mix(map[i].u,map[i].v))
            {
                cnt++;
                sum+=map[i].w;
            }
            if(cnt==n-1)
                break;
        }
        printf("%d\n",sum);
    }
    return 0;
}

代码2(Prime):

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <string>
#include <iostream>
#include <stack>
#include <queue>
#include <vector>
#include <algorithm>
#define mem(a,b) memset(a,b,sizeof(a))
#define N 100+20
#define M 100000+20
#define MOD 1000000000+7
#define inf 0x3f3f3f3f
using namespace std;
int n,minn,m;
int map[N][N],dis[N],vis[N];
int cnt,sum;
void Prime()
{
    vis[1]=1;
    cnt++;
    int k;
    while(cnt<n)
    {
        minn=inf;
        for(int i=1; i<=n; i++)//找到dis里面的最小的
        {
            if(!vis[i]&&dis[i]<minn)
            {
                minn=dis[i];
                k=i;
            }
        }
        vis[k]=1;
        cnt++;
        sum+=dis[k];
        for(int j=1; j<=n; j++)
        {
            if(!vis[j]&&dis[j]>map[k][j])//更新生成树到非树顶点的距离
                dis[j]=map[k][j];
        }
    }
}
int main()
{

    while(~scanf("%d",&n)&&n)
    {
        cnt=0;
        sum=0;
        mem(vis,0);
        int t1,t2,t3;
        m=(n*n-n)/2;
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++)
                if(i==j)
                    map[i][j]=0;
                else
                    map[i][j]=inf;//建图
        for(int i=1; i<=m; i++)
        {
            scanf("%d%d%d",&t1,&t2,&t3);
            map[t1][t2]=t3;
            map[t2][t1]=t3;//存储无向图
        }
        for(int i=1; i<=n; i++)
            dis[i]=map[1][i];
        Prime();
        printf("%d\n",sum);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值