NYOJ1023 还是回文(区间DP,详细)

本文探讨了如何通过添加或删除字符将一个字符串转换为回文串的问题,并给出了具体的算法实现,包括动态规划的方法和样例解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:
还是回文
时间限制:2000 ms | 内存限制:65535 KB
难度:3
描述
判断回文串很简单,把字符串变成回文串也不难。现在我们增加点难度,给出一串字符(全部是小写字母),添加或删除一个字符,都会产生一定的花费。那么,将字符串变成回文串的最小花费是多少呢?
输入
多组数据
第一个有两个数n,m,分别表示字符的种数和字符串的长度
第二行给出一串字符,接下来n行,每行有一个字符(a~z)和两个整数,分别表示添加和删除这个字符的花费
所有数都不超过2000
输出
最小花费
样例输入
3 4
abcb
a 1000 1100
b 350 700
c 200 800
样例输出
900

思路

首先我们定义
dp[i][j]代表从第i个字母到第j个字母使它成为回文串所要添加字母的个数

我们应该能想到,当只需要添加一个字符时这个串成为回文串时,把这个字符删去,它也可以成为一个回文串,所以我们就可以去增加或删除最小的数字作为花费,储存在cost[]数组里面

那么存在:

dp[i][j]=min(dp[i+1][j]+cost[s[i]],dp[i][j-1]+cost[s[j]])

如果存在s[i]==s[j]的情况,我们还要处理:

dp[i][j]=min(dp[i][j],dp[i+1][j-1])

为了方便理解,我详细的解释一下样例:
首先我们知道了
cost[a]=1000
cost[b]=350
cost[c]=200

我们很容易知道,dp[i][i]=0

我们的数组是:

字符abcb
编号0123

由小区间递推出大区间,那么:

当间隔为1时:

dp[0][1]=min(dp[1][1]+1000,dp[0][0]+350)=350
dp[1][2]=min(dp[2][2]+350,dp[1][1]+200)=200
dp[2][3]=min(dp[3][3]+200,dp[2][2]+350)=200

当间隔为2时:

dp[0][2]=min(dp[1][2]+1000,dp[0][1]+200)=550
dp[1][3]=min(dp[2][3]+350,dp[1][2]+350)=550
注意,当前的s[i]与s[j]都是字符b,所以我们要比较:
dp[1][3]=min(dp[1][3],dp[2][2])=0(dp[1][3]的值为0)

当间隔为3时:

dp[0][3]=min(dp[1][3]+1000,dp[0][2]+350)=900

到了这里,上面的递推式就很好理解了。

代码

#include <cstdio>
#include <cstring>
#include <cctype>
#include <string>
#include <set>
#include <iostream>
#include <stack>
#include <cmath>
#include <queue>
#include <vector>
#include <algorithm>
#define mem(a,b) memset(a,b,sizeof(a))
#define inf 0x3f3f3f3f
#define mod 1000007
#define N 1000
#define M 100000+50
#define ll long long
using namespace std;
char s[2020];
int dp[2020][2020];
char c[5];
int cost[30];//增删字母所需要的花费
int main()
{
    int n,m,x,y;
    while(~scanf("%d%d",&n,&m))
    {
        mem(dp,0);
        mem(cost,0);
        scanf("%s",s);
        for(int i=0; i<n; i++)
        {
            scanf("%s%d%d",c,&x,&y);
            cost[c[0]-'a']=min(x,y);
        }
        for(int k=1; k<m; k++)
            for(int i=0; i+k<m; i++)
            {
                int j=i+k;
                dp[i][j]=min(dp[i+1][j]+cost[s[i]-'a'],dp[i][j-1]+cost[s[j]-'a']);
                if(s[i]==s[j])
                    dp[i][j]=min(dp[i][j],dp[i+1][j-1]);
            }
        printf("%d\n",dp[0][m-1]);
    }
    return 0;
}

#include <cstdio>
#include <cstring>
#include <cctype>
#include <string>
#include <set>
#include <iostream>
#include <stack>
#include <cmath>
#include <queue>
#include <vector>
#include <algorithm>
#define mem(a,b) memset(a,b,sizeof(a))
#define inf 0x3f3f3f3f
#define mod 1000007
#define N 1000
#define M 100000+50
#define ll long long
using namespace std;
char s[2020];
int dp[2020][2020];
char c[5];
int cost[30];//增删字母所需要的花费
int main()
{
    int n,m,x,y;
    while(~scanf("%d%d",&n,&m))
    {
        mem(dp,0);
        mem(cost,0);
        scanf("%s",s);
        for(int i=0; i<n; i++)
        {
            scanf("%s%d%d",c,&x,&y);
            cost[c[0]-'a']=min(x,y);
        }
        for(int k=1; k<m; k++)
            for(int i=0; i+k<m; i++)
            {
                int j=i+k;
                if(s[i]==s[j])
                    dp[i][j]=dp[i+1][j-1];
                else
                    dp[i][j]=min(dp[i+1][j]+cost[s[i]-'a'],dp[i][j-1]+cost[s[j]-'a']);
            }
        printf("%d\n",dp[0][m-1]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值