我计算方法之学习(一)

原创 2006年06月12日 23:15:00

一、误差及有关概念

1、误差的来源:模型误差、观察误差、截断误差和舍入误差

2、绝对误差、相对误差与绝对误差限、相对误差限
假如准确解为x,x*为一近似值,则称e*=x*-x为近似值x*的绝对误差;而e*与x的比值(e*/x,一般用e*/x*)称x*的相对误差。
在实际计算中,由于准确解一般无法求得,常用误差限表示。|x*-x|<=E*,则称E*为绝对误差限,而|e*/x*|<=Er*,Er*称相对误差限。

3、有效数字
一般指按照“四舍五入”原则,取得的x*的有效数。当x*写成x*=|0.x1 x2 ...... xn * 10^m|形式,其中x1为1~9的一个数字,m为整数,若|e*|=|x*-x|<=0.5*10^(m-n),则称x*具有n为有效数字,x1 x2 ...... xn 为x*的有效数字。
有效数字与相对误差限间的关系:若x*=|0.x1 x2 ...... xn * 10^m| != 0是x具有n位有效数字的近似值,则其相对误差限为Er<=1/(2*x1) * 10^(1-n).

4、数值运算的误差估计
x,y为两个近似数,其误差限分别为E(x),E(y),他们进行四则运算得到的误差限为:

E(x+y) = E(x)+E(y), E(x-y) = E(x)-E(y), E(x*y) = E(x)*|y| + E(y)*|x|, E(x/y) = (|x|*E(y)+|y|*E(x))/y^2;

当自变量x有误差时,函数值y也有误差, 误差限:E(y) = |y的导数|*E(x);

当函数f为多元函数时,其误差限:E = (f对各个自变量求偏导的绝对值*各自变量的误差限)之和 / f的近似值。

 

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

机器学习中距离和相似性计算方法

在机器学习和数据挖掘中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别。最常见的是数据分析中的相关分析,数据挖掘中的分类和聚类算法,如 K 最近邻(KNN)和 K 均值(K-Means)...

进制数的计算方法图例(来源:传智播客马士兵 coreJava 学习视频)

1.二进制和十进制之间的转换列子

数值计算方法

  • 2017-10-08 21:00
  • 886KB
  • 下载

实用计算机视觉 -- 一种基于直方图的最优阈值计算方法

按照惯例,首先放上测试图片: 基于直方图概率统计分布的最优阈值计算算法如下: 其中的定义见博客,经过每一次迭代后,将初始化的灰度水平加1,直到算法收敛,验证代码如下: i...

数值计算方法 (冯康)

  • 2016-05-20 16:39
  • 25.44MB
  • 下载

计算方法实验代码

级联分类器(Adaboost)之《多尺度尺寸的计算方法》

最近有人问我:在级联分类器中,如何根据设定的参数来计算多尺度的问题。并给我看了一篇网上找来的文章(里面展示的尺度尺寸有无),让我给讲解下:        多尺度尺寸的计算  主要是下面这个循环: ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)