OCP-1Z0-053-V13.02-692题

数据库工作量重放步骤详解
本文详细介绍了数据库工作量重放的过程,包括捕获工作量、预处理、重放工作量、还原数据库、连接映射等关键步骤,并强调了正确的顺序为预处理工作量、还原数据库、设置客户机。

692. Your company wants to upgrade the production database to a Real Application Clusters (RAC)

environment. You set up the best RAC database and want to  replay a recorded workload captured from

the production database on  the test machine.

The following steps may be used to  replay the database workload:

1)  Preprocess the captured workload

2)  Restart the database in RESTRICTED mode.

3)  Set up Replay Clients.

4)  Restore the test database to the point when the capture started.

5) Remap connections.

Which is the correct sequence of the required steps?

A.1, 4, 3, 5

B.1, 4, 5, 3

C.2, 1, 5, 3, 4

D.1, 2, 4, 5, 3

Answer: A 

答案解析:

参考:http://blog.csdn.net/rlhua/article/details/14053709

个人觉得应该选B.

数据库重放步骤:

捕获工作量--预处理工作量--重放工作量--还原数据库----连接映射--设置客户机--分析

内容概要:本文介绍了一个基于Python的地理空间分析自动化流程,旨在利用Google Earth Engine(GEE)获取森林分类遥感数据,并结合GIS技术对特定不动产区域内的森林类型进行可视化与面积统计。系统通过加载不动产矢量边界(AOI),从GEE平台调用NASA/ORNL发布的全球森林分类数据集(2020年版),裁剪并下载对应区域的栅格数据,随后在本地进行像素级分类统计,计算各类森林(原始林、年轻次生林、老年次生林)的覆盖面积(单位:公顷)。同时,程序生成标准化的地图可视化结果,包含底图、图例、比例尺、指北针和智能经纬网格,并最终导出包含图表和统计表格的PDF报告。整个流程实现了从云端数据获取到本地制图输出的一体化处理。; 适合人群:具备Python编程基础及地理信息系统(GIS)知识的科研人员、环境监测从业者或遥感技术人员,尤其适合从事生态评估、土地利用分析等相关工作的专业人士;; 使用场景及目标:① 实现对指定区域森林类型的自动分类与面积量化;② 生成符合出版标准的空间地图与分析报告,支持环境保护、碳汇评估或政策制定等应用;③ 提供可复用的自动化管道,减少重复性人工操作; 阅读建议:此资源以面向对象方式组织代码,结构清晰,建议使用者熟悉geemap、rasterio、geopandas等库的基本用法,并确保已配置GEE开发环境。学习时应重点关注类间的协作关系、坐标系处理逻辑以及地图美化细节,便于根据实际需求扩展分类体系或调整输出样式。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值