MFCC:Mel频率倒谱系数

转载 2011年01月10日 09:36:00

概述:

MFCC:Mel频率倒谱系数的缩写。Mel频率是基于人耳听觉特性提出来的,它与Hz频率成非线性对应关系。Mel频率倒谱系数(MFCC)则是利用它们之间的这种关系,计算得到的Hz频谱特征。


应用:

MFCC已经广泛地应用在语音识别领域。由于Mel频率与Hz频率之间非线性的对应关系,使得MFCC随着频率的提高,其计算精度随之下降。因此,在应用中常常只使用低频MFCC,而丢弃中高频MFCC。


提取流程 :

MFCC参数的提取包括以下几个步骤: 

1. 预滤波:CODEC前端带宽为300-3400Hz的抗混叠滤波器。 

2. A/D变换:8kHz的采样频率,12bit的线性量化精度。 

3. 预加重:通过一个一阶有限激励响应高通滤波器,使信号的频谱变得平坦,不易受到有限字长效应的影响。 

4. 分帧:根据语音的短时平稳特性,语音可以以帧为单位进行处理,实验中选取的语音帧长为32ms,帧叠为16ms。 

5. 加窗:采用哈明窗对一帧语音加窗,以减小吉布斯效应的影响。 

6. 快速傅立叶变换(Fast Fourier Transformation, FFT):将时域信号变换成为信号的功率谱。 

7. 三角窗滤波:用一组Mel频标上线性分布的三角窗滤波器(共24个三角窗滤波器),对信号的功率谱滤波,每一个三角窗滤波器覆盖的范围都近似于人耳的一个临界带宽,以此来模拟人耳的掩蔽效应。 

8. 求对数:三角窗滤波器组的输出求取对数,可以得到近似于同态变换的结果。 

9. 离散余弦变换(Discrete Cosine Transformation, DCT):去除各维信号之间的相关性,将信号映射到低维空间。 

10. 谱加权:由于倒谱的低阶参数易受说话人特性、信道特性等的影响,而高阶参数的分辨能力比较低,所以需要进行谱加权,抑制其低阶和高阶参数。 

11. 倒谱均值减(Cepstrum Mean Subtraction, CMS):CMS可以有效地减小语音输入信道对特征参数的影响。 
12. 差分参数:大量实验表明,在语音特征中加入表征语音动态特性的差分参数,能够提高系统的识别性能。在本系统中,我们也用到了MFCC参数的一阶差分参数和二阶差分参数。 
13. 短时能量:语音的短时能量也是重要的特征参数,本系统中我们采用了语音的短时归一化对数能量及其一阶差分、二阶差分参数。


 

 

相关文章推荐

梅尔频率倒谱系数(MFCC)的提取过程与C++代码实现

MFCC参数提取步骤 ——>预加重 ——>分帧 ——>对每一帧加窗 ——>对每一帧补零 ——>各帧信号的FFT变换及其功率谱 ——>梅尔滤波(通过40个滤波器) ——>取对数 ——>DCT变换 ——>...

梅尔频率倒谱系数(MFCC)教程

The first step in any automatic speech recognition system is to extract features i.e. identify the c...

语音信号处理之(四)梅尔频率倒谱系数(MFCC)

MFCCs(Mel Frequency Cepstral Coefficents)是一种在自动语音和说话人识别中广泛使用的特征

梅尔频率倒谱系数(MFCC)讲解

这几天搞一搞关于MFCC的东西,看到这篇文章非常好,所以转载下。 转自:http://blog.csdn.net/zouxy09 在任意一个Automatic speech recognition ...

语音信号处理之(四)梅尔频率倒谱系数(MFCC)

梅尔频率倒谱系数(MFCC)

mel倒谱系数的提取

利用梅尔倒谱系数(MFCC)及空间聚类算法实现音色识别

写在前面 2016年4月参加了哈尔滨工业大学深圳研究生院举办的创新创业比赛,司职算法组长,切入点定在了音色识别和相似明星音才艺展示推荐算法上,不才,拿到了一等奖,趁佳节未散与大家分享。 项目进度安...

MelFrequencyFilterBank API 及Mel频率滤波器

[java] view plain copy print?本类的方法:  public void newProperties(PropertySheet ps);对属性进行改变时,调用,对属性的设置与...

MelFrequencyFilterBank API 及Mel频率滤波器

本类的方法: public void newProperties(PropertySheet ps);对属性进行改变时,调用,对属性的设置与构造方法的设置一样。对滤波器个数,最小频率,最大频率,log...
  • taiyb
  • taiyb
  • 2015-06-03 20:09
  • 2419

STFT和声谱图,梅尔频谱(Mel Bank Features)与梅尔倒谱(MFCCs)

最近小编在做ASC(Acoustic Scene Classification)问题,不管是用传统的GMM模型,还是用机器学习中的SVM或神经网络模型,提取声音特征都是第一步。梅尔频谱和梅尔倒谱就是使...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)