SIFT算法学习

原创 2012年03月28日 20:05:44

这篇文章参考了Utkarsh的博客,感觉他对SIFT的理解非常深刻,传送门在此:SIFT--Utkarsh

SIFT学习

1.  SIFT:ScaleInvariant Feature Transform

不同图像间的特征匹配是计算机视觉中的一个焦点,如果图片是大致相似的(同样的尺寸,同样的方向),简单的角点检测(Harris)是可行的。但是如果图象有不同尺度和旋转,你就需要尺度不变的特征转换(SIFT)。

2.  为毛SIFT牛叉

SIFT不仅仅是尺度不变,你可以改变下列几项,一样能获得较好的结果。

²  尺度

²  旋转

²  亮度(强度)

²  视角

下面是一个例子:

我们要寻找这些目标:


这是我们搜索的场景:


这是我们得到的结果:


大的矩形标识的是匹配的图片,小的矩形标识的是这些区域里的单个特征。注意这些大的矩形是根据目标的朝向和尺度来刻画的。

3.  算法

SIFT是一个较复杂的算法,所以我把整个算法分割成几个部分,这是整个大纲。

 Ø  构建一个尺度空间

这是最初的准备工作,你要创建一个原始图片的一组尺度图来确保尺度不变。

Ø  LoG近似

高斯拉普拉斯算子对于查找特征点很有帮助,但是消耗太大,所以我们采用在之前创建的尺度图来完成近似LoG的计算

Ø  查找特征点

在之前快速近似策略上,我们尝试查找特征点,在我们前一步的计算得到高斯差分(DoG)中查找极大值和极小值。

Ø  舍弃不适合的特征点

边缘和低对比度区域是不合适的特征点。去除它们使得算法更有效和鲁棒性。这里使用了一个类似Harris角点的技术。

Ø  对特征点赋予方向

每个特征点都会计算出一个方向,它会涉及到更多的计算,这可以有效的去除方向的影响,使得它满足方向不变性。

Ø  产生SIFT特征

 

4.  你能用SIFT干什么

图片检索追踪。。。。。。。。whatever you like


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

sift算法学习总结

  • 2012-10-30 21:19
  • 630KB
  • 下载

SIFT算法學習小記

http://www.cnblogs.com/saintbird/archive/2008/08/20/1271943.html Sift是David Lowe於1999年提出的局部特征描述...

基于SIFT 关键点增强现实初始化算法(学习笔记)

SIFT特征描述算子         SIFT算子是一种能对图像旋转,尺度缩放,仿射变换,视角变化,光照变化等变化因素保持一定不变性,而对物体运动、遮挡、噪声等因素也保持较强可匹配的图像局部特征描述...

特征点检测学习_1(sift算法)

特征点检测学习_1(sift算法)       sift算法在cv领域的重要性不言而喻,该作者的文章引用率在cv界是number1.本篇博客只是本人把sift算法知识点整理了下,以免忘记。本文...

SIFT算法学习

原文转自:http://www.cnblogs.com/tjulxh/archive/2011/12/29/2306474.html  感谢原创作者~ SIFT算法学习 (本文...

OpenCV中feature2D学习——SIFT和SURF算法实现目标检测

概述        之前的文章SURF和SIFT算子实现特征点检测和SURF算子实现特征点提取与匹配简单地讲了利用SIFT和SURF算子检测特征点,并且对特征点进行特征提取得到特征描述符(descr...

引用 SIFT算法学习:特征提取函数的使用

引用 feifei17866 的 SIFT算法学习:特征提取函数的使用    作为一种匹配能力较强的局部描述算子,SIFT算法的实现相当复杂,但从软件开发的角度来说,只要会使用其中几个比较重要...

【OpenCV学习笔记 019】SIFT和SURF算法实现目标检测

SIFT特征提取

SIFT算法学习

最近在看sift算法相关的知识,发现了一篇技术大牛的帖子,tejiangcitie
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)