SIFT学习--构建尺度空间

原创 2012年03月28日 20:27:17

现实世界的对象只会在某些尺度上有意义。比如面前一棵树,如果在大的尺度上,树是有意义的,从另一个角度来说,树叶的信息被抛弃了。尺度空间就是从数字图像的角度模拟这些概念。

如果要去除一些详细的信息,你必须确保你没有引入新的错误的细节,一个较好的做法是运用高斯核来进行模糊处理。

所以要创建一个尺度空间,你必须拿到原始图像并且逐渐产生模糊处理后的图像。

下面是一个例子:


可以看到猫的头盔失去了细节信息。

1. SIFT中的尺度空间

SIFT将尺度空间带入下一个的等级,你拿到原始图像,持续产生模糊图像,然后你将原始图像尺度缩小一半,再次产生模糊图像,持续如此。

我们看SIFT中会有什么效果:


统一大小的图像(纵向)属于一个octave,上面有4个octave,每一个octave有5幅图像。每幅图都是在增长的尺度(模糊的规模)上建立的。

2. 技术细节

Octaves和尺度

Octave和尺度的数量取决于原始图像的大小,SIFT的创造者建议4个Octave和5个模糊等级是理想的。

第一个Octave

如果原始图片的大小是2的幂并且质量较高能让算法产生更多的关键点。

模糊处理

高斯模糊:


含义:

²  L 模糊处理过的图片

²  G 高斯模糊算子

²  I 图片

²  x,y坐标

²  σ 是尺度参数,可以看做是模糊处理规模的大小,值越大,模糊的越多。

²  * x,y上的卷积操作。




版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

【OpenCV】SIFT原理与源码分析:DoG尺度空间构造

《SIFT原理与源码分析》系列文章索引:http://blog.csdn.net/xiaowei_cqu/article/details/8069548 尺度空间理论 自然界中的物体随着观测尺度不...

尺度空间(Scale space)理论

尺度空间方法的基本思想是:在视觉信息处理模型中引入一个被视为尺度的参数,通过连续变化尺度参数获得不同尺度下的视觉处理信息,然后综合这些信息以深入地挖掘图像的本质特征。尺度空间方法将传统的单尺度视觉信息...

SIFT中的尺度空间和传统图像金字塔

SIFT解析(一)建立高斯金字塔 SIFT(Scale-Invariant Feature Transform,尺度不变特征转换)在目标识别、图像配准领域具有广泛的应用,下 面按照SIFT...

SIFT尺度空间的理解

最近学习SIFT算法,仿照robwhess的openSift和OpenCv

关于Sift算法中尺度空间的通俗理解

关于Sift算法中尺度空间的通俗理解       最近也注意一些图像拼接方面的文章,很多很多,尤其是全景图拼接的,实际上类似佳能相机附加的软件,好多具备全景图拼接,多幅图像自...

尺度空间及SIFT

尺度空间方法的基本思想是:在视觉信息处理模型中引入一个被视为尺度的参数,通过连续变化尺度参数获得不同尺度下的视觉处理信息,然后综合这些信息以深入地挖掘图像的本质特征。尺度空间方法将传统的单尺度视觉信息...

SIFT算法:DoG尺度空间生产

SIFT算法:DoG尺度空间生产  SIFT算法:KeyPoint找寻、定位与优化 SIFT算法:确定特征点方向  SIFT算法:特征描述子 【注】未经允许,本博客所有文章不...
  • Jfuck
  • Jfuck
  • 2013-09-04 21:58
  • 1857

SIFT中生成DOG尺度空间

目录: 1、高斯尺度空间(GSS - Gauss Scale Space) 2、高斯差分(DOG - Difference of Gauss)   2.1 生产DoG   2....

SIFT特征--构造DOG尺度空间

最近打算做全景图拼接,尝试过hugin和opencv stitch,一直没有很满意的效果。打算深入研究,恰好,在github看到清华一小哥的项目,故逐步分析他的代码。    sift特征是全景拼接的第...

sift尺度空间的理解以及计算

理解sift 里面的尺度 为了保持尺度不变的特性,作者构建高斯金字塔及差分金字塔的方法来取得极值点。   但是其中的尺度的计算有点不太理解,看了源码和网络上的分析后做个笔记   下面的一段代...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)