关闭

word2vec安装使用笔记

word2vec 入门基础基本概念word2vec是Google在2013年开源的一个工具,核心思想是将词表征映 射为对应的实数向量。目前采用的模型有以下两种 CBOW(Continuous Bag-Of-Words,即连续的词袋模型) Skip-Gram 项目链接:https://code.google.com/archive/p/word2vec背景知识词向量词向量就是用来将语言中的词进行数学化...
阅读(86) 评论(1)

机器学习笔记-Logistic回归

回顾linear regressionlinear\ regression如果使用平方错误的话,我们可以很方便的解析出最好的ww是什么。即wbest=X†yw_{ best}=X^{\dagger} yLogistic Regression Problem问题的提出从一个人的身体数据来判断这个人有没有心脏病,这是一个典型的二元分类问题。Logistic Regression关注的是根据一个人的身体状...
阅读(280) 评论(0)

机器学习笔记-线性回归

Linear Regression Problem信用额度预测希望算法可以给出针对用户信用卡额度的预测,即当我们收集到用户的一些信息(如下),那么我们如何决定发放给该用户的信用额度呢? 线性回归这个问题要求我们的hypothesis可以给出实数范围内的预测结果。同样的从最简单的假设出发,对于每一个用户,x=(x0,x1,x2,⋯,xd)x = (x_0 , x_1, x_2, \cdots,...
阅读(211) 评论(0)

机器学习笔记-利用线性模型进行分类

理论部分 这一部分主要是为了证明为什么可以使用线性回归和逻辑斯蒂回归来做二元分类问题。 我们想要将已知的线性模型应用到二分类甚至是多分类的问题。我们已知的线性模型有如下的三种,它们有一个共同的地方是都会利用输入的特征计算一个加权和 s=wTxs = w^Tx。 线性分类不好解, 因为想要最小化E0/1(w)E_{0/1}(w)被证明是一个NP难问题。但相比之下,线性回归和逻辑斯蒂回归...
阅读(29) 评论(0)

SVM学习笔记-软间隔SVM

回顾 在上一篇中记录了Kernel SVM,利用核函数使得我们可以通过对偶形式的SVM解决非线性的问题,例如使用高斯核函数可以在无限维度的空间中寻找超平面。但是正如我们之前说到过的,高斯SVM在参数选择的不恰当的时候,也会出现overfit的情况。为什么SVM也会出现overfit的情况呢?一个原因可能是因为我们选择的特征转化太过于powerful,就算存在最大间隔的限制,最终也还是会出现过拟合...
阅读(515) 评论(1)

SVM学习笔记-核函数与非线性SVM

核技术 回顾 上次讲到了SVM的对偶形式,这个对偶问题也是二次规划问题。所以可以使用二次规划的方法来解决。之所以要使用SVM的对偶形式,是因为它告诉了我们SVMSVM背后的一些几何意义,例如,对偶的SVM问题的解中αn≥0\alpha_n \ge 0所对应的那些点(zn,yn)(z_n, y_n)就是我们想要找的支撑向量。另一方面,这个对偶问题在求解的时候好像几乎和我们所在的空间的维度没有...
阅读(264) 评论(0)

SVM学习笔记-对偶形式的SVM

Roadmap 上一篇笔记讲述了一个模型:线性支撑向量机。其目的是要找一个比较“胖”的分割线或者叫分割超平面,因为这些比较“胖”的hyperplane对于测量误差是比较robust的。并且使用二次规划方法来解决这样的问题。 这篇将要讲述的是将这个模型转化为另一种形式,以使得该模型可以更容易的延伸到其他不同的各种各样的应用当中去。 Non-Linear Support Vector Mac...
阅读(346) 评论(0)

SVM学习笔记-线性支撑向量机

Linear Support Vector Machine Linear Classification Revisited 当数据是线性可分的时候,PLA算法可以帮助我们找到那个hyperplane。 Which Line Is Better? 对于PLA算法来说,最终得到哪一条线是不一定的,取决于算法scan数据的过程。 从VC bound的角度来说,上述三条线的复杂度是一样的...
阅读(1860) 评论(1)

netowrkx备忘笔记

networkx学习笔记安装以前在需要使用代码绘制复杂网络中的图时,使用过igraph,但是igraph的安装配置十分的麻烦,安装了anaconda之后也不能使用,所以转而使用networkx。安装了anaconda之后无需在进行任何其他的配置就可以使用。创建一个图graph创建一个没有连边和节点的图import networkx as nx G = nx.Graph()根据定义,图是节点以及节点之...
阅读(256) 评论(0)

决策树ID3算法及java实现

0. 信息论信道模型和信息的含义信息论是关于信息的本质和传输规律的理论。 信道模型:信源(发送端)-> 信道 -> 信宿(接收端) 1. 通信过程是在随机干扰的环境汇中传递信息的过程 2. 信宿对于信源的先验不确定性:在通信前,信宿不能确切的了解信源的状态; 3. 信宿对于信源的后验不确定性:在通信后,由于存在干扰,信宿对于接收到的信息仍然具有不确定性 4. 后验不确定性总是要小于先验不确...
阅读(375) 评论(0)

SI疾病传播模型实现

在SI疾病传播模型中,网络中的节点在任一时刻有两种可能的状态,易感态susceptible(S)和感染态infected(I)。处于易感态(S)的节点当被感染后转变为感染态(I)并且不能恢复。我们假设在t_0时刻网络中除了一个节点被感染了之外,这个节点就是传播源,其余的所有节点都处于易感态。之后传播源以一定的疾病传播概率(rates of infection)感染它的邻居,与此同时,疾病或者是信息...
阅读(534) 评论(0)

使用networkx计算网络的介数中心性

网络节点的重要性指标介数中心性的计算,使用python的包networkx import networkx as nx G = nx.Graph() #从文件中读取网络的adjacentMatrix,通过networkx的add_edges方法向对象G中添加边 def readNetwork(filename): fin = open(filename, 'r') # for line...
阅读(631) 评论(0)

基于演化博弈数据利用压缩感知方法进行网络重构

0.background 在工程和科学的许多领域,我们经常会遇到的问题是,目标网络是由联网的元素(节点)组成的,但是节点之间的相互作用或者说网络的拓扑结构是完全未知的。在这种情况下,我们利用基于时间序列从实验和观测中得到的数据中来重构网络的拓扑就是有价值和经济利益的。这就需要我们了解未知网络的动态演化过程或者需要大量连续时间上的振荡信号。但是对于社会,经济和生物科学网络来说,他们的节点之间的相互...
阅读(311) 评论(0)

机器学习--knn手写数字识别系统

0. 刚接触java,并且在学习机器学习的相关算法,knn又非常的易于实现,于是就有了这个小系统。 1.knn算法简介: 2.该程序的功能主要有如下几个,       功能1:可以在面板上手写输入数字       功能2:可以对特定的区域进行截屏,因为要获取用户手写的数字,保存为图像,然后使用算法进行分析       功能3:可以对图片进行缩放,要保证图片的大小(维度)要和...
阅读(674) 评论(0)

聚类系数可调的无标度网络生成算法

0. BA无标度网络模型简单介绍: 实际网络的两个重要的特性:       (1)增长性:即网络的规模是不断的增长的,ER随机图和WS小世界模型中的网络的大小是固定       (2)优先连接(Preferential  attachment以下简称PA):新的节点更倾向于和那些具有较高的连接度的hub节点相连。这种现象也叫作“富者更富(Rich get richer)”或者是“马太效应”...
阅读(1265) 评论(9)
75条 共5页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:70970次
    • 积分:1441
    • 等级:
    • 排名:千里之外
    • 原创:75篇
    • 转载:0篇
    • 译文:0篇
    • 评论:48条
    最新评论