关闭
当前搜索:

拉格朗日对偶性问题-《统计学习方法》学习笔记

0. 内容介绍         在约束最优化问题中, 常常利用拉个朗日对偶性将原始问题转化为对偶问题,通过解对偶问题而得到原始问题的解,该方法应用在很多的统计学习方法中。例如在上一篇文章中(http://blog.csdn.net/robin_xu_shuai/article/details/52791306)所说的最大熵模型。在学习最大熵模型中我们看到,需要求解满足所有已知条件并且使得熵最大的...
阅读(1039) 评论(0)

逻辑斯谛回归与最大熵模型-《统计学习方法》学习笔记

0. 概述: Logistic回归是统计学中的经典分类方法,最大熵是概率模型学习的一个准则,将其推广到分类问题得到最大熵模型, logistic回归模型与最大熵模型都是对数线性模型。 本文第一部分主要讲什么是logistic(逻辑斯谛)回归模型,以及模型的参数估计,使用的是极大对数似然估计以及梯度下降法,第二部分介绍什么是最大熵模型,首先介绍最大熵原理, 然后根据最大熵原理推...
阅读(4513) 评论(1)

八大排序算法及实现

将一个元素插入到已经排好序的有序表中,从而使得有序表的   个数+1。 算法从第二个元素开始。将一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。  *  *2) 从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置以使得其变成有序的序列。  *  (如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)  *...
阅读(671) 评论(0)
    个人资料
    • 访问:88319次
    • 积分:1723
    • 等级:
    • 排名:千里之外
    • 原创:86篇
    • 转载:0篇
    • 译文:0篇
    • 评论:51条
    最新评论