关闭

基于演化博弈数据利用压缩感知方法进行网络重构

标签: 网络重构压缩感知演化博弈论文学习王文旭
398人阅读 评论(0) 收藏 举报
分类:
0. background

在工程和科学的许多领域,我们经常会遇到的问题是,目标网络是由联网的元素(节点)组成的,但是节点之间的相互作用或者说网络的拓扑结构是完全未知的。在这种情况下,我们利用基于时间序列从实验和观测中得到的数据中来重构网络的拓扑就是有价值和经济利益的。这就需要我们了解未知网络的动态演化过程或者需要大量连续时间上的振荡信号。但是对于社会,经济和生物科学网络来说,他们的节点之间的相互作用是基于演化博弈的。除了数据的离散性,可用的数据往往是稀疏的,并且可用的数据量是少的。


1. 基于压缩感知方法使用演化博弈数据来重构网络拓扑结构的一般性方法(框架)
压缩感知是针对稀疏信号重构的而提出的一种应用十分广泛的范式。利用压缩感知重构网络的两大优点:
(1). 小数据量要求。
(2). 可以基于连续或者是离散的信号重构网络。
简单的说,在博弈中参与者使用两种不同的策略是自己获得最大的收益。本文将证明即使有关参与者策略和收益的信息是有限的,我们使用基于压缩感知的方法仍然可以高效的得到网络的拓扑结构。



2. 演化博弈

2.1

在传统博弈理论中,常常假定参与人是完全理性的,且参与人在完全信息条件下进行的,但对现实的经济生活中的参与人来讲,参与人的完全理性与完全信息的条件是很难实现的。与传统博弈理论不同,演化博弈理论并不要求参与人是完全理性的,也不要求完全信息的条件。

2.2

(1).在演化博弈的任一时刻,一个参与者可以选择两种策略(S)之一:合作(C)或者背叛(D)。

                                   


(2).参与者的收益取决于彼此选择的策略和特定的游戏收益矩阵。

                                    

上图表明的是小黄人的受益,即如果小黄人的策略是D(背板)小红人的策略是C(合作),那么小黄人的受益是T;如果小黄人的策略是D(背板)小红人的策略是D,那么小黄人的受益是P。

(3).参与者收益g的计算公式:gi = SiTPSj。其中P是收益矩阵,Si和Sj分别是参与者i和参与者j的策略。


note:每种博弈的收益矩阵是不同的。

那么参与者i和j的受益的计算方法如下:

                                   

(4).在每一个时间步,参与者与他们的所有邻居进行一轮博弈并且获得收益,参与者 i 的收益为:
                                   

(5).为了最大化在下一轮中的收益,参与者会通过比较与邻居参与者的收益来升级自己的策略。
这里使用费米方程来模拟参与者的有限理性。w(Si<--Sj )表示参与者 i 随机的选择一个邻居 j 之后,以概率w采取 j 的策略。费米方程如下:

                                   

其中,

k=0时表示参与者是绝对理性的。这个时候当邻居 j 的受益大于自己的受益的时,参与者 i 以 1 的概率采取参与者 j 的策略作为自己下一轮的策略。当邻居 j 的受益小于自己的受益的时,参与者 i 以 0 的概率采取参与者 j 的策略作为自己下一轮的策略,也就是说仍然保持自己当前的策略作为下一轮博弈的策略。

k->∞时表示参与者在更新策略时是完全随机的。


3. 压缩感应

(1). 压缩感知的目标是通过以下的等式,根据对X的线性测量Y来重构向量X∈RM
                                  

Note:Φ 是M*N的矩阵,压缩感知显著的特点的是测量数据的个数远小于未知向量的维数
(2). 通过解决以下的凸优化问题可以准确的恢复向量 X
                                 

本文将要展示的是: 压缩感知为我们提供了基于少量的来自演化博弈数据的网络重构方法。



4.基于演化博弈数据利用压缩感知方法进行网络重构

整个框架的流程如下



5. 实验结果

三种网络模型(随机网络模型,小世界网络模型,无标度网络模型)上囚徒困境博弈和雪堆博弈的成功比

以上分别为囚徒困境博弈和雪堆博弈数据上的重构结果.

SREL:存在边预测成功比,(预测的存在的边数/实际存在的边数)
SRNL:不存在边预测成功比,(预测的不存在的边数/实际的不存在的边数)
Data:使用的测量数据的个数与参与者个数的比值
网络的大小为N = 100
每一个数据点通过平均10次实现中随机选取的数据得到。


6. 复现结果



7. 结尾

本文简单的介绍了一下《Network Reconstruction Based on Evolutionary-Game Data via Compression Sensing》这篇论文的思想,对压缩感知有了一点感性的认识。如果想要深入学习,建议还是要下载王文旭教授的文章,认真研读。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:87063次
    • 积分:1710
    • 等级:
    • 排名:千里之外
    • 原创:86篇
    • 转载:0篇
    • 译文:0篇
    • 评论:51条
    最新评论