Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
求最短路径步骤
算法步骤如下:
1. 初使时令 S={V0},T={其余顶点},T中顶点对应的距离值
若存在<V0,Vi>,d(V0,Vi)为<V0,Vi>弧上的权值
若不存在<V0,Vi>,d(V0,Vi)为∝
2. 从T中选取一个其距离值为最小的顶点W且不在S中,加入S
3. 对T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的
距离值比不加W的路径要短,则修改此距离值
重复上述步骤2、3,直到S中包含所有顶点,即S=T为止
代码:
import java.util.*;
public class DjistraPath {
/**
* @param args
*/
/*
* 本题是求从0点到所有点的最短路径
* 每一轮"Find shrotest"都是再找距离0点最近的点v,顾可以知道暂时从0到v的最短距离就是dist[v],因为如果还有更近的距离,那么v就不是距离0最近的点
* 到找到最近点v后,都要以v为过度点,来比较0->v->j和原来记录的路径哪个更近,从而以刷新dist[]
* 当假设除了0点其他,都当过v点的所有情况后,dist[j]数组保留下来的就是从0到j的最短路径
*/
final static int MAXN = 100;
final static int BigNum = 10000000;
static Scanner scan = new Scanner(System.in);
public static void main(String[] args) {
// TODO Auto-generated method stub
int[][] graph = new int[MAXN][MAXN];//The Adjacency matrix of the graph
int[] dist = new int[MAXN];//The shortest distence between 0 and N
boolean[] vis= new boolean[MAXN];//Sign the point which is visited
int n,m;//n stands for theamount of positions;m stands for the path
n = scan.nextInt();
m = scan.nextInt();
Arrays.fill(vis, false);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
if(i==j)
graph[i][j] = 0;
else
graph[i][j] = BigNum;
int pos1,pos2;
for(int i=0;i<m;i++) {//Set the date
pos1 = scan.nextInt();
pos2 = scan.nextInt();
graph[pos1][pos2] = scan.nextInt();
}
for(int i=0;i<n;i++) //Set the dist[]
dist[i] = graph[0][i];
vis[0] = true;int min,v = 0;
for(int i=0;i<n-1;i++) {//Check n-1 times
min = BigNum;
for(int j=0;j<n;j++) {//Find shortest
if(vis[j]!= true && dist[j]<min) {//If the point is not visited and the distence between 0 and j is smallest mark the point j
min = dist[j];
v = j;
}
vis[v] = true; //Sign the point v to be visited
}
for(int j=0;j<n;j++) {//Refresh the dist[]
if(vis[j] != true && dist[j]>dist[v]+graph[v][j]) {//when distence is shorter when pass the point v refresh the dist
dist[j] = dist[v] + graph[v][j];
}
}
}
for(int i=0;i<n;i++) {
System.out.println("0->"+i+":"+dist[i]);
}
}
}
/*
Test Date:
5 7
0 1 3
0 3 8
1 2 5
1 4 4
2 3 4
2 4 7
3 4 2
Out put:
0->1:3
0->2:8
0->3:8
0->4:7
*/