[bzoj3732][最小生成树][lca]Network

109 篇文章 4 订阅
10 篇文章 0 订阅

Description

给你N个点的无向图 (1 <= N <= 15,000),记为:1…N。 图中有M条边 (1 <= M <= 30,000)
,第j条边的长度为: d_j ( 1 < = d_j < = 1,000,000,000).

现在有 K个询问 (1 < = K < = 20,000)。 每个询问的格式是:A
B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少?

Input

第一行: N, M, K。 第2..M+1行: 三个正整数:X, Y, and D (1 <= X <=N; 1 <= Y <= N).
表示X与Y之间有一条长度为D的边。 第M+2..M+K+1行: 每行两个整数A
B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少?

Output

对每个询问,输出最长的边最小值是多少。

Sample Input

6 6 8
1 2 5
2 3 4
3 4 3
1 4 8
2 5 7
4 6 2
1 2
1 3
1 4
2 3
2 4
5 1
6 2
6 1

Sample Output

5
5
5
4
4
7
4
5

HINT

1 <= N <= 15,000

1 <= M <= 30,000

1 <= d_j <= 1,000,000,000

1 <= K <= 15,000

题解

一开始想了一个二分+bfs的做法。。二分最长边长度之后跑bfs,无情TLE
怎么办??很痛苦
让我们再来观察一下这个题。。好像 好像和4242差不多
一个点到另外一个点的最长边最小,那么,就一定在这个图的最小生成树上啊!
所以说。。对边排序后建最小生成树,树上倍增一下最大权,之后lca询问就好。。
4242弱化版我居然还傻逼了

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
struct node
{
    int x,y,c,next;
}e[111000],a[111000];int len,lene,last[21000];
void ins(int x,int y,int c){len++;a[len].x=x;a[len].y=y;a[len].c=c;a[len].next=last[x];last[x]=len;}
void insx(int x,int y,int c){lene++;e[lene].x=x;e[lene].y=y;e[lene].c=c;}
bool cmp(node n1,node n2){return n1.c<n2.c;}
int fa[21000];
int findfa(int x)
{
    if(fa[x]!=x)fa[x]=findfa(fa[x]);
    return fa[x];
}
int n,m,K;
int bin[25];
int f[21000][25],dep[21000],maxn[21000][25];
void pre_tree_node(int x)
{
    for(int i=1;i<=20;i++)if(dep[x]>=bin[i])f[x][i]=f[f[x][i-1]][i-1],maxn[x][i]=max(maxn[x][i-1],maxn[f[x][i-1]][i-1]);
    for(int k=last[x];k;k=a[k].next)
    {
        int y=a[k].y;
        if(y!=f[x][0])
        {
            f[y][0]=x;maxn[y][0]=a[k].c;
            dep[y]=dep[x]+1;
            pre_tree_node(y);
        }
    }
}
int sol(int x,int y)
{
    int ret=0;
    if(dep[x]<dep[y])swap(x,y);
    for(int i=20;i>=0;i--)if(dep[f[x][i]]>=dep[y])ret=max(ret,maxn[x][i]),x=f[x][i];
    if(x==y)return ret;
    for(int i=20;i>=0;i--)if(dep[x]>=bin[i] && f[x][i]!=f[y][i])ret=max(ret,max(maxn[x][i],maxn[y][i])),x=f[x][i],y=f[y][i];
    return max(ret,max(maxn[x][0],maxn[y][0]));
}
int main()
{
    bin[0]=1;for(int i=1;i<=20;i++)bin[i]=bin[i-1]*2;
    scanf("%d%d%d",&n,&m,&K);
    len=0;memset(last,0,sizeof(last));
    lene=0;
    for(int i=1;i<=m;i++)
    {
        int x,y,c;
        scanf("%d%d%d",&x,&y,&c);
        insx(x,y,c);
    }
    sort(e+1,e+1+m,cmp);
    for(int i=1;i<=n;i++)fa[i]=i;
    for(int i=1;i<=m;i++)
    {
        int p=findfa(e[i].x),q=findfa(e[i].y);
        if(p!=q)
        {
            fa[p]=q;
            ins(e[i].x,e[i].y,e[i].c);
            ins(e[i].y,e[i].x,e[i].c);
        }
    }
    for(int i=1;i<=n;i++)
        if(fa[i]==i)
        {
            f[i][0]=0;dep[i]=1;pre_tree_node(i);
        }
    while(K--)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        printf("%d\n",sol(x,y));
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值