【JZOJ5153】树形图求和 题解

题目大意

这里写图片描述

      N<=300M<=1e5w<=1e9

【60%】n<=50,m<=200

       有向图生成树计数:
       基尔霍夫矩阵是度数矩阵减邻接矩阵,现在把度数矩阵改成出度矩阵,然后以 N 为根的话,答案就是 MN,N

       考虑每一条边的贡献,那就是要计算强制选这条边之后的生成树个数。
       如果强制选 (ui,vi,wi) ,相当于把 ui 的其他出边删掉,只保留这条边。那对于基尔霍夫矩阵来说,相当于把 ui 这行改掉。

       对于 60 分,每次暴力修改矩阵,算 Det

【100%】

       对于快速计算某个矩阵修改一行(或一列)的 Det ,有这么个公式:

       比如要把某行修改成 c1,c2,...,cn ,我们给每一行设个未知数 xi ,然后对每一列都列一条方程: Ai,jxi=cj ,解出来。那么如果要把第 i 行修改成这个,就给原来的 Det 乘上 xi

       所以可以先把方程解好,询问的时候直接乘。
       由于 c 的值是不固定的,所以解方程是要解出这样的形式:xi=a1c1+a2c2+...+ancn
       具体实现可以弄两个矩阵,左边是方程系数,右边是 c <script type="math/tex" id="MathJax-Element-2445">c</script> 的系数,对左边高斯消元的同时,右边做相同的操作。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;

typedef long long LL;

const int maxn=305, maxm=1e5+5;
const LL mo=1e9+7;

int n,m,u[maxm],v[maxm],w[maxm];

LL mi(LL x,LL y)
{
    LL re=1;
    for(; y; y>>=1, x=x*x%mo) if (y&1) re=re*x%mo;
    return re;
}

LL D,J[maxn][maxn];
void Det()
{
    D=1;
    fo(i,1,n-1)
    {
        fo(j,i,n-1) if (J[j][i]!=0)
        {
            swap(J[i],J[j]);
            if (i!=j) D*=-1;
            break;
        }
        fo(j,i+1,n)
        {
            LL c=J[j][i]*mi(J[i][i],mo-2)%mo;
            fo(k,i,n) (J[j][k]-=c*J[i][k])%=mo;
        }
    }
    fo(i,1,n-1) (D*=J[i][i])%=mo;
    D=(D+mo)%mo;
}

LL G[maxn][maxn],Gc[maxn][maxn],c[maxn];
void Gauss()
{
    fo(i,1,n)
    {
        fo(j,i,n) if (G[j][i]!=0)
        {
            swap(G[i],G[j]), swap(Gc[i],Gc[j]);
            break;
        }
        LL c=mi(G[i][i],mo-2);
        fo(j,1,n) (G[i][j]*=c)%=mo, (Gc[i][j]*=c)%=mo;
        fo(j,1,n) if (j!=i)
        {
            LL c=G[j][i];
            fo(k,1,n) (G[j][k]-=c*G[i][k])%=mo, (Gc[j][k]-=c*Gc[i][k])%=mo;
        }
    }
}
void Pre()
{
    fo(i,1,n)
    {
        Gc[i][i]=1;
        fo(j,1,n) G[i][j]=J[j][i];
    }
    Gauss();
}

int main()
{
    scanf("%d %d",&n,&m);
    fo(i,1,m)
    {
        scanf("%d %d %d",&u[i],&v[i],&w[i]);
        J[u[i]][u[i]]++;
        J[u[i]][v[i]]--;
    }

    Pre();
    Det();

    LL ans=0;
    fo(i,1,m) if (u[i]<n)
    {
        LL x=(Gc[u[i]][u[i]]-Gc[u[i]][v[i]])%mo;
        (ans+=D*x%mo*w[i])%=mo;
    }

    printf("%lld\n",(ans+mo)%mo);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
树上选点是蓝桥杯Java题目中的一种类型,通常需要在给定的树结构中选择一个或多个节点作为目标节点,并进行相应的操作。下面是一个简单的树上选点蓝桥Java题解的示例: 题目描述: 给定一棵有N个节点的树,每个节点上都有一个非负整数值。现在需要选择一些节点,使得选择的节点的值之和最大,且所选节点不能相邻(即选了一个节点,则其父节点和子节点都不能选)。请编写一个程序,计算出最大的节点值之和。 解题思路: 这是一个典型的动态规划问题。我们可以定义一个数组dp,其中dp[i]表示以第i个节点为根节点的子树中所选节点的最大值之和。对于每个节点i,有两种情况: 1. 选择节点i:则其子节点都不能选,所以dp[i] = val[i] + dp[grandchild1] + dp[grandchild2] + ... 2. 不选择节点i:则其子节点可以选择或不选择,所以dp[i] = max(dp[child1], dp[child2], ...) 根据以上思路,我们可以使用递归或者迭代的方式来计算dp数组。最终,所求的最大值即为dp,其中1表示根节点。 代码示例: ```java public class TreeSelectPoint { public static void main(String[] args) { int[] values = {0, 1, 2, 3, 4, 5}; // 节点值数组,下标从1开始 int[][] edges = {{1, 2}, {1, 3}, {2, 4}, {2, 5}}; // 树的边关系数组 int n = values.length - 1; // 节点个数 int[] dp = new int[n + 1]; // 动态规划数组 // 构建树的邻接表 List<List<Integer>> adjacencyList = new ArrayList<>(); for (int i = 0; i <= n; i++) { adjacencyList.add(new ArrayList<>()); } for (int[] edge : edges) { int u = edge[0]; int v = edge[1]; adjacencyList.get(u).add(v); adjacencyList.get(v).add(u); } dfs(1, -1, values, adjacencyList, dp); // 从根节点开始进行深度优先搜索 System.out.println(dp[1]); // 输出最大节点值之和 } private static void dfs(int cur, int parent, int[] values, List<List<Integer>> adjacencyList, int[] dp) { dp[cur] = values[cur]; // 初始化当前节点的dp值为节点值 for (int child : adjacencyList.get(cur)) { if (child != parent) { // 避免重复访问父节点 dfs(child, cur, values, adjacencyList, dp); dp[cur] += dp[child]; // 更新当前节点的dp值 } } } } ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值