算法导论示例-BinarySearchTree

原创 2006年06月09日 00:28:00
/**
 * Introduction to Algorithms, Second Edition 
 * 12 Binary Search Trees
 * @author 土豆爸爸
 * 
 */
import java.util.ArrayList;
import java.util.List;

public class BinarySearchTree {
    /**
     * 数据节点
     */
    public static class Node {
        int key;
        Node parent; //父节点
        Node left; //左子节点
        Node right; //右子节点
        
        public Node(int key) {
            this.key = key;
        }
    }
    
    private Node root;
    
    /**
     * 采用递归法查找键值为k的节点。
     * @param k 节点的键值
     * @return 返回键值为k的节点
     */
    public Node search(int k) {
        return search(root, k);
    }
    
    /**
     * 采用递归法查找键值为k的节点。
     * @param x 当前节点
     * @param k 节点的键值
     * @return 返回键值为k的节点
     */
    private Node search(Node x, int k) {
        if(x == null || k == x.key) {
            return x;
        } else if(k < x.key) {
            return search(x.left, k);
        } else {
            return search(x.right, k);
        }
    }
    
    /**
     * 采用迭代法查找键值为k的节点。
     * @param x 当前节点
     * @param k 节点的键值
     * @return 返回键值为k的节点
     */
    public Node iterativeSearch(int k) {
        return iterativeSearch(root, k);
    }
    
    /**
     * 采用迭代法查找键值为k的节点。
     * @param x 当前节点
     * @param k 节点的键值
     * @return 返回键值为k的节点
     */
    private Node iterativeSearch(Node x, int k) {
        while(x != null && k != x.key) {
            if(k < x.key) {
                x = x.left;
            } else {
                x = x.right;
            }
        }
        return x;
    }
    
    /**
     * 返回树的最小键值的节点。
     * @return 最小键值的节点
     */
    public Node minimum() {
        return minimum(root);
    }
    
    /**
     * 返回树的最小键值的节点。
     * @param x 当前节点
     * @return 最小键值的节点
     */
    private Node minimum(Node x) {
        while(x.left != null) {
            x = x.left;
        }
        return x;
    }
    
    /**
     * 返回树的最大键值的节点。
     * @return 最大键值的节点
     */
    public Node maximum() {
        return maximum(root);
    }
    
    /**
     * 返回树的最大键值的节点。
     * @param x 当前节点
     * @return 最大键值的节点
     */
    private Node maximum(Node x) {
        while(x.right != null) {
            x = x.right;
        }
        return x;
    }
    
    /**
     * 返回指定节点x的后继节点。
     * @param x 当前节点
     * @return x的后继节点;如果x具有最大键值,返回null
     */
    public Node successor(Node x) {
        if(x.right != null) {
            return minimum(x);
        }
        Node y = x.parent;
        while(y != null && x == y.right) {
            x = y;
            y = y.parent;
        }
        return y;
    }
    
    /**
     * 返回指定节点x的前驱节点。
     * @param x 当前节点
     * @return x的前驱节点;如果x具有最小键值,返回null
     */
    public Node predecessor(Node x) {
        if(x.left != null) {
            return maximum(x);
        }
        Node y = x.parent;
        while(y != null && x == y.left) {
            x = y;
            y = y.parent;
        }
        return y;
    }
    
    /**
     * 插入节点。
     * @param z 待插入节点
     */
    public void insert(Node z) {
        Node y = null; //当前节点的父节点
        Node x = root; //当前节点
        while(x != null) { //迭代查寻z应该所在的位置
            y = x;
            if(z.key < x.key) {
                x = x.left;
            } else {
                x = x.right;
            }
        }
        z.parent = y;
        if(y == null) { 
            root = z; //如果没有父节点,则插入的节点是根节点。
        } else if(z.key < y.key) {
            y.left = z;
        } else {
            y.right = z;
        }
    }
    
    /**
     * 删除节点。
     * @param z 待删除节点
     */
    public Node delete(Node z) {
        Node y = null;
        Node x = null;
        if (z.left == null || z.right == null) {
            y = z;
        } else {
            y = successor(z);
        }

        if (y != null) {
            x = y.left;
        } else {
            x = y.right;
        }

        if (x != null) {
            x.parent = y.parent;
        }

        if (y.parent == null) {
            root = x;
        } else if (y == y.parent.left) {
            y.parent.left = x;
        } else {
            y.parent.right = x;
        }

        if (y != z) { //如果z包含两个子节点,用y替换z的位置
            y.parent = z.parent;
            if (z == z.parent.left) {
                z.parent.left = y;
            } else {
                z.parent.right = y;
            }

            y.left = z.left;
            y.right = z.right;
        }
        return y;
    }
    
    /**
     * 中序历遍。即从小到大排序。
     * @return 返回已排序的节点列表
     */
    public List<Node> inorderWalk() {
        List<Node> list = new ArrayList<Node>();
        inorderWalk(root, list);
        return list;
    }
    
    /**
     * 中序历遍。
     * @param x 当前节点
     * @param list 历遍结果存储在list中
     */
    private void inorderWalk(Node x, List<Node> list) {
        if(x != null) {
            inorderWalk(x.left, list);
            list.add(x);
            inorderWalk(x.right, list);
        }
    }
}

import java.util.List;

import junit.framework.TestCase;

public class BinarySearchTreeTest extends TestCase {
    public void testLinkedList() {
        BinarySearchTree tree = new BinarySearchTree();
        // 插入100个随机节点
        for (int i = 0; i < 100; i++) {
            int key = (int) (Math.random() * 1000);
            if (tree.search(key) == null) {
                tree.insert(new BinarySearchTree.Node(key));
            }
        }

        verifyOrdered(tree.inorderWalk());
        
        BinarySearchTree.Node node = null;
        for (int i = 0; i < 1000; i++) {
            node = tree.search(i);
            if (node != null) {
                break;
            }
        }
        assertNotNull(node);
        tree.delete(node);
        assertEquals(null, tree.search(node.key));
        
        verifyOrdered(tree.inorderWalk());
    }
    
    private boolean verifyOrdered(List<BinarySearchTree.Node> list) {
        for (int i = 1; i < list.size(); i++) {
            if (list.get(i - 1).key > list.get(i).key) {
                return false;
            }
        }
        return true;
    }
}

算法导论22.2广度优先搜索 练习总结

22.2-1 请计算出在有向图 22-2(a) 上运行广度优先搜索算法后的 d 值和 π 值,这里假定结点 3 为算法所用的源结点。 ANSWER: 22.2-2 请计算出在图 22-3 所示无向...
  • chan15
  • chan15
  • 2015年11月14日 19:50
  • 2237

用Latex排版论文(4)《大连海事大学硕博学位论文Latex模板》中算法排版例子(添加中文输入和输出)

最近一直在写硕士毕业论文,在LaTeXStudio上发现了由@智博是小叮当编写的《大连海事大学硕博学位论文latex模板》,所以就开始尝试使用该模板来写毕业论文,有种前人种树后人乘凉的感觉。     ...
  • kbawyg
  • kbawyg
  • 2014年03月05日 00:50
  • 3545

算法导论第十一章----11.1.1-11.1.4

http://test.scripts.psu.edu/users/d/j/djh300/cmpsc465/notes-4985903869437/solutions-to-some-homework...
  • lihenair
  • lihenair
  • 2014年02月27日 18:20
  • 3041

链式哈希表(Hash Table)--算法导论示例

In computer science, a hash table is an associative array data structure that associates keys with v...
  • rockerman_shane
  • rockerman_shane
  • 2011年02月21日 20:06
  • 2134

算法导论与比赛常用算法示例_第1版

  • 2013年12月01日 22:44
  • 390KB
  • 下载

算法导论答案第六章(第三版)详细讲解

  • 2018年01月15日 20:14
  • 174KB
  • 下载

算法导论答案第五章(第三版)详细讲解

  • 2018年01月15日 12:24
  • 189KB
  • 下载

算法导论第三版_中英文版+第一章---第35章完整版答案

  • 2018年01月13日 21:52
  • 57B
  • 下载

算法导论 完整版

  • 2018年01月15日 14:53
  • 95.65MB
  • 下载

C++算法导论

  • 2014年09月06日 14:25
  • 46.62MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:算法导论示例-BinarySearchTree
举报原因:
原因补充:

(最多只允许输入30个字)