samylee的博客

33
原创
0
转载
0
译文
269
评论
121685
访问

我的博客文章

2017
08

yolov2-cpu检测90ms每帧之tinier模型(3.5M)应用

众所周知,yolov2是个很好的深度学习框架,是检测算法的得力助手。但是yolov2在windows下cpu的测试速度不尽如人意,原作者给出的模型有多种,如tiny-yolo,以及full-yolo。博主用的是tiny-yolo模型,i7处理器完成一帧图像(640x460)的检测需要1.4s,很难满足工程的需求。 所以本博文意在解决的是yolo在windows-cpu下的应用问题。那么如何在尽量满足准确率的情况下完成yolov2的提速? 可以从两方面着手:1)精简代码,优化代

(276)(2)
2016
11

SSD train your own data

Because there is no tutorial online about SSD training our own data, in this blog, I will explain how to train our own data. I hope this blog can solve the doubts about SSD. By the way, I built a new QQ group, which is a discussion group about Faster-rcnn

(4518)(5)
2017
23

OpenCl_CPU加速矩阵运算

本博文用的是intel的opencl架构,下载链接https://software.intel.com/en-us/intel-opencl/download,默认安装即可 注意:安装完毕后opencl的sdk在路径C:\Program Files (x86)\Intel\OpenCL SDK\6.3下

(5)(0)
2017
21

OpenCl加速矩阵运算

OpenCl运用并行的方法加速矩阵运算,在业界得到广泛运用,博主也试了一试,挺好玩的。 注意:1、OpenCl针对的数据量越大,加速效果越明显

(15)(0)
2017
21

神经网络测试之softmax输出

因博主非计算机专业,代码大神可忽略此文。 代码经过博主测试,准确无误!

(8)(0)
2017
19

神经网络pooling层

博主闲来无事,写了pooling函数,由于博主非计算机专业,代码大神可忽略此博文,只是为了熟悉神经网络之用。 注意: 只针对2x2pooling,stride=2,其他pooling修改代码即可.

(32)(0)
2017
16

Openblas加速三维矩阵卷积操作-增加num_output计算

上个博客中(http://blog.csdn.net/samylee/article/details/73302547)提到了Openblas加速三维矩阵卷积操作,本博客增加了num_output计算。

(19)(0)
2017
15

Openblas加速三维矩阵卷积操作

接上个博客(http://blog.csdn.net/samylee/article/details/73252715)所讲,这篇博文介绍如何用openblas加速三维矩阵。

(25)(0)
2017
14

Openblas加速二维矩阵卷积操作-增加pad计算

上个博客中(http://blog.csdn.net/samylee/article/details/73251042)提到了openblas加速二维矩阵的卷积计算,本博客增加了pad计算。 下个博客将介绍openblas在三维矩阵卷积计算中的加速。

(26)(0)
2017
14

Openblas加速二维矩阵卷积操作

Openblas可以加速矩阵卷积的操作,越复杂的卷积,越适合Openblas的加速,以下程序经博主测试准确无误。

(37)(0)
2017
16

MTCNN的windows-cpu配置

MTCNN为级联卷积网络,主要应用于人脸检测,速度和精度可观。有需要的小伙伴可以看看这个教程 windows-cpu配置据说比matlab版本快2到3倍,所需准备的四个文件如下:

(214)(0)
34条 共4页1 2 3 4 下一页 尾页
img

samylee

等级:

排名:千里之外

博客专栏
文章分类
文章存档
阅读排行
评论排行
推荐文章
最新评论
img