关闭

[置顶] SSD-ResNet15_CUT提速之CPU检测156ms/1frame

从原理的角度或是从应用的角度来讲,SSD比YOLO稍微稳一点,SSD检测框架没有严重的抖动!所以加速了YOLO过后,又来折腾一下SSD的提速!...
阅读(139) 评论(0)

[置顶] 基于深度学习的行人入侵检测

行人入侵检测项目适用于公安等管理部门针对场景进行行人监控,项目作用点比较广泛! 博主近些天用c写了一个基于深度学习的行人入侵检测工程,可通用摄像头视角。...
阅读(126) 评论(0)

[置顶] 基于深度学习的密集人群密度检测

密集人群密度检测项目近年来成为研究热门,此项目适用于公安或者保障部门针对特定场景进行人流量控制,项目作用点比较广泛! 博主近些天写了一个基于深度学习的密度检测工程,可通用摄像头视角。...
阅读(106) 评论(0)

[置顶] yolov2-cpu检测90ms每帧之tinier模型(3.5M)应用

众所周知,yolov2是个很好的深度学习框架,是检测算法的得力助手。但是yolov2在windows下cpu的测试速度不尽如人意,原作者给出的模型有多种,如tiny-yolo,以及full-yolo。博主用的是tiny-yolo模型,i7处理器完成一帧图像(640x460)的检测需要1.4s,很难满足工程的需求。 所以本博文意在解决的是yolo在windows-cpu下的应用问题。那么如何在尽量满足准确率的情况下完成yolov2的提速? 可以从两方面着手:1)精简代码,优化代...
阅读(1257) 评论(4)

YOLO如何训练分类网络???

一般YOLO的工程应用直接上检测,源自作者提供了分类的预训练模型,但是如果自己改网络训练怎么办?预训练网络没有怎么办?熬到开!!! 不怕,两种方法可以解决! 第一种:比较笨的方法,就是下载imagenet数据训练分类网络! 第二种:一层一层的改网路,每改一层,在原有预训练的条件下训练网络,生成新的模型时作为下一次修改网络的预训练模型!说的好像不是很清楚额,这个问题以后讨论! 今天讨...
阅读(32) 评论(0)

c++入侵警报之消息机制

工程项目中,某些项目可能需要入侵警报(输出警报声音),并且弹出消息框,待关闭消息框时,警报停止! 要求:警报和输出消息框不影响正常的程序运行,意思就是警报和弹出消息框时,程序继续往下执行! 问题解决方案:同时开辟两个线程,即可不影响程序的正常执行!...
阅读(20) 评论(0)

原始caffe添加CenterLoss_layer

CenterLoss_layer可以在原分类的基础上(某种程度上)可提升几个点左右(博主测试提升6个点),还不占前向时间,好东西啊! 原理这里不介绍了,网上应有尽有!这里只是介绍如何在caffe中如何添加CenterLoss_layer这样的新层!...
阅读(85) 评论(0)

Caffe源码解析7:Pooling_Layer

转自楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ Pooling 层一般在网络中是跟在Conv卷积层之后,做采样操作,其实是为了进一步缩小feature map,同时也能增大神经元的视野。在Caffe中,pooling层属于vision_layer的一部分,其相关的定义也在vision_layer.hpp的头文件中。...
阅读(58) 评论(0)

Caffe源码解析6:Neuron_Layer

转自楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ NeuronLayer,顾名思义这里就是神经元,激活函数的相应层。我们知道在blob进入激活函数之前和之后他的size是不会变的,而且激活值也就是输出 yy 只依赖于相应的输入 xx。在Caffe里面所有的layer的实现都放在src文件夹下的layer文件夹中,基本...
阅读(47) 评论(0)

Caffe源码解析5:Conv_Layer

转自楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ Vision_layer里面主要是包括了一些关于一些视觉上的操作,比如卷积、反卷积、池化等等。这里的类跟data layer一样好很多种继承关系。主要包括了这几个类,其中CuDNN分别是CUDA版本,这里先不讨论,在这里先讨论ConvolutionLayer B...
阅读(120) 评论(0)

Caffe源码解析4: Data_layer

转自楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ data_layer应该是网络的最底层,主要是将数据送给blob进入到net中,在data_layer中存在多个跟data_layer相关的类 BaseDataLayerBasePrefetchingDataLayerDataLayerDummyDataLayerH...
阅读(92) 评论(0)

Caffe源码解析3:Layer

转自楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ layer这个类可以说是里面最终的一个基本类了,深度网络呢就是一层一层的layer,相互之间通过blob传输数据连接起来。首先layer必须要实现一个forward function,前递函数当然功能可以自己定义啦,在forward中呢他会从input也就是Layer...
阅读(73) 评论(0)

Caffe源码解析2:SycedMem

转自楼燚(yì)航的blog,http://www.cnblogs.com/louyihang loves baiyan/ 看到SyncedMem就知道,这是在做内存同步的操作。这类个类的代码比较少,但是作用是非常明显的。文件对应着syncedmem.hpp,着syncedmem.cpp 首先是两个全局的内联函数。如果机器是支持GPU的并且安装了cuda,通过cudaMallocHos...
阅读(80) 评论(0)
50条 共5页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:150000次
    • 积分:1780
    • 等级:
    • 排名:千里之外
    • 原创:43篇
    • 转载:7篇
    • 译文:0篇
    • 评论:283条
    最新评论