HOG特征-理解篇

转载 2013年12月02日 15:07:54

网上去找关于HOG的资料,发现理解性的较少,而且较为冗长,为方便大家理解便自己写了篇,希望能对奋斗在特征提取第一线的同志们有所帮助:

HOG即histogram of oriented gradient, 是用于目标检测的特征描述子,该技术将图像局部出现的方向梯度次数进行计数,该方法和边缘方向直方图、scale-invariant feature transform类似,不同的是hog的计算基于一致空间的密度矩阵来提高准确率。Navneet Dalal and Bill Triggs首先在05年的CVPR中提出HOG,用于静态图像or视频的行人检测。


HOG特征原理:

HOG的核心思想是所检测的局部物体外形能够被光强梯度或边缘方向的分布所描述。通过将整幅图像分割成小的连接区域(称为cells),每个cell生成一个方向梯度直方图或者cell中pixel的边缘方向,这些直方图的组合可表示出(所检测目标的目标)描述子。为改善准确率,局部直方图可以通过计算图像中一个较大区域(称为block)的光强作为measure被对比标准化,然后用这个值(measure)归一化这个block中的所有cells.这个归一化过程完成了更好的照射/阴影不变性。

与其他描述子相比,HOG得到的描述子保持了几何和光学转化不变性(除非物体方向改变)。因此HOG描述子尤其适合人的检测。

通俗的讲:

HOG特征提取方法就是将一个image:

1.            灰度化(将图像看做一个x,y,z(灰度)的三维图像)

2.            划分成小cells(2*2)

3.            计算每个cell中每个pixel的gradient(即orientation)

4.            统计每个cell的梯度直方图(不同梯度的个数),即可形成每个cell的descriptor


再小谈下Hog、SIFT与PCA-SIFT的应用与区别:

Hog没有旋转和尺度不变性,因此计算量小;而SIFT中每个feature需要用128维的向量来描述,因此计算量相对很大。

那么行人检测中怎么应用HOG呢

对于解决Scale-invariant 的问题:将图片进行不同尺度的缩放,就相当于对模板进行不同尺度scale的缩放

对于解决Rotation-invariant 的问题:建立不同方向的模版(一般取15*7的)进行匹配

总的来说,就是在不同尺度上的图像进行不同方向的模板(15*7)匹配,每个点形成一个8方向的梯度描述。


SIFT由于其庞大计算量不用与行人检测,而PCA-SIFT的方法过滤掉很多维度的信息,只保留20个主分量,因此只适用于行为变化不大的物体检测。


method

Time

Scale

Rotation

Blur

Illumination

Affine

Sift

common

best

best

common

common

good

PCA-sift

good

good

good

best

good

best

Surf 

best

common

common

good

best

good









关于sift的其他讲解:

http://blog.csdn.net/abcjennifer/article/details/7639681

http://blog.csdn.net/abcjennifer/article/details/7372880

http://blog.csdn.net/abcjennifer/article/details/7365882

【特征检测】HOG特征算法

HOG(Histogram of Oriented Gridients的简写)特征检测算法,最早是由法国研究员Dalal等在CVPR-2005上提出来的,一种解决人体目标检测的图像描述子,是一种用于表...
  • hujingshuang
  • hujingshuang
  • 2015年08月07日 14:33
  • 24029

HOG特征(毕业论文节选)

HOG(Histograms of Oriented Gradients)特征是Dalal于2005年针对行人检测问题提出的特征,能够大体描述行人的轮廓[12]。HOG特征是目前行人检测领域最常用的特...
  • soidnhp
  • soidnhp
  • 2014年12月08日 17:07
  • 6574

Fast HOG源码注释

DPM中使用的HOG特征提取方法,和原始的HOG不太一样,比原来的要快一些,检测效果也好一些。下边的代码是从作者的目标检测中抽出的,详情见这里。虽然已经比原始HOG快了不少,但仍有一些优化空间,比...
  • ubunfans
  • ubunfans
  • 2015年07月10日 15:03
  • 3104

HOG特征-理解篇

网上去找关于HOG的资料,发现理解性的较少,而且较为冗长,为方便大家理解便自己写了篇,希望能对奋斗在特征提取第一线的同志们有所帮助: HOG即histogram of oriented grad...
  • abcjennifer
  • abcjennifer
  • 2012年03月18日 08:44
  • 94244

深入浅出理解HOG特征---梯度方向直方图

梯度方向直方图 原文路径:https://www.learnopencv.com/histogram-of-oriented-gradients/最近在搞车牌识别的时候,训练样本去识别车牌的时候用到...
  • wjb820728252
  • wjb820728252
  • 2017年10月30日 17:18
  • 157

HOG特征的理解

HOG特征有关HOG特征的介绍、详解、代码在网上都能找到很多。我是在处理车牌识别中字符识别问题时,无意之中接触到HOG特征算法的,当时赶时间完成作业,正愁于如何对数字和字母,以及部分汉子提取特征,以便...
  • u012470083
  • u012470083
  • 2015年03月07日 18:56
  • 1040

HOG特征matlab代码实现

  • 2014年09月07日 17:05
  • 9KB
  • 下载

基于HOG特征和SVM的手势识别

  • 2013年09月12日 18:30
  • 1.31MB
  • 下载

LBF/HOG特征SVM的train和trainAuto范例

  • 2016年11月29日 22:27
  • 23.4MB
  • 下载

hog特征学习

  • 2016年06月17日 18:35
  • 5KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:HOG特征-理解篇
举报原因:
原因补充:

(最多只允许输入30个字)