关闭

51NOD 1183——编辑距离(动态规划基础)

标签: 51NOD动态规划算法
286人阅读 评论(0) 收藏 举报
分类:

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
例如将kitten一字转成sitting:
sitten (k->s)
sittin (e->i)
sitting (->g)
所以kitten和sitting的编辑距离是3。俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。
给出两个字符串a,b,求a和b的编辑距离。
Input
第1行:字符串a(a的长度 <= 1000)。
第2行:字符串b(b的长度 <= 1000)。
Output
输出a和b的编辑距离
Input示例
kitten
sitting
Output示例
3

思路:设dp[i][j]为字符串a的前i个字符和字符串b的前j个字符的编辑距离。那么我们来看看dp[i][j]可以由哪些状态转移而来。

如果a[i-1]=b[i-1],那么显然dp[i][j]=dp[i-1][j-1]

如果不等呢?那么它可以由dp[i-1][j-1],dp[i-1][j],dp[i][j-1]转移而来,分别是替换,添加,删除操作。这样就能得到递推式了。


代码:

#include <cmath>
#include <cstring>
#include <cstdio>
#include <vector>
#include <string>
#include <algorithm>
#include <string>
#include <set>
#include <cmath>

#define MAXN 1010
using namespace std;
char a[MAXN],b[MAXN];
int dp[MAXN][MAXN];//dp[i][j]a的前i个字符和b的前j个字符的编辑距离


int main()
{
    scanf("%s%s",a,b);
    int la=(int)strlen(a);
    int lb=(int)strlen(b);
    for(int i=0;i<=la;i++)
        dp[i][0]=i;
    for(int i=0;i<=lb;i++)
        dp[0][i]=i;
    for(int i=1;i<=la;i++)
        for(int j=1;j<=lb;j++)
        {
            if(a[i-1]==b[j-1]){
                dp[i][j]=dp[i-1][j-1];
            }else{
                dp[i][j]=min(min(dp[i-1][j],dp[i][j-1]),dp[i-1][j-1])+1;
            }
        }
    printf("%d\n",dp[la][lb]);
    return 0;
}








































0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

51Nod 1183 编辑距离(DP—编辑距离问题)

1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 编辑距离,又称Levenshtein距离(也叫做Edit Dis...
  • zwj1452267376
  • zwj1452267376
  • 2016-04-19 22:03
  • 1118

LeetCode-Edit Distance 编辑距离与动态规划

作者:disappearedgod 文章出处:http://blog.csdn.net/disappearedgod/article/details/24662201 时间:2014-4-28 ...
  • disappearedgod
  • disappearedgod
  • 2014-06-18 15:27
  • 1399

动态规划---最短编辑距离

描述: 设A和B是2个字符串。要用最少的字符操作将字符串A转换为字符串B。这里所说的字符操作包括: (1)删除一个字符; (2)插入一个字符; (3)将一个字符改为另一个字符。 将字符串A变...
  • sdjzping
  • sdjzping
  • 2013-10-17 21:04
  • 3547

51nod--1183 编辑距离(动态规划)

题目:1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 编辑距离,又称Levenshtein距离(也叫做Edit Distance),...
  • Aoxuets
  • Aoxuets
  • 2016-03-20 00:08
  • 370

51nod 1183编辑距离 经典dp

编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除...
  • liuyanfeier
  • liuyanfeier
  • 2016-02-27 16:38
  • 337

51nod 1183 编辑距离

51nod 1183 编辑距离根据LCS的思路,做两字符串的比较。 f(i,j)表示A字符串在1–i,于B字符串在1–j时的最小改变量。 递推式: f(i,j) = min(f(i – 1, j...
  • qq_33199236
  • qq_33199236
  • 2016-10-03 22:27
  • 156

51Nod 1183 编辑距离

编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除...
  • qq_33913037
  • qq_33913037
  • 2017-05-09 16:54
  • 159

【51NOD】1183 编辑距离(最长公共子序列变形)

1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 编辑距离,又称Levenshtein距离(也叫做Edit Dist...
  • qaz135135135
  • qaz135135135
  • 2016-08-15 11:20
  • 197

51nod1183 编辑距离

1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 编辑距离,又称Levenshtei...
  • Fire_to_cheat_
  • Fire_to_cheat_
  • 2017-11-03 11:24
  • 117

51nod 1183 编辑距离

http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183. 题意不再赘述。 分析:对于两个字符串s和t,dp[i][j]记录...
  • Yeluorag
  • Yeluorag
  • 2015-10-31 02:02
  • 1012
    个人资料
    • 访问:81473次
    • 积分:3274
    • 等级:
    • 排名:第12007名
    • 原创:257篇
    • 转载:6篇
    • 译文:0篇
    • 评论:7条