Fibonacci numbers

Program for Fibonacci numbers

The Fibonacci numbers are the numbers in the following integer sequence.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 141, ……..

In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation

    Fn = Fn-1 + Fn-2

with seed values

   F0 = 0 and F1 = 1. 


We strongly recommend that you click here and practice it, before moving on to the solution.


Write a function int fib(int n) that returns Fn. For example, if n = 0, then fib() should return 0. If n = 1, then it should return 1. For n > 1, it should return Fn-1 + Fn-2

Following are different methods to get the nth Fibonacci number.

Method 1 ( Use recursion ) 
A simple method that is a direct recusrive implementation mathematical recurance relation given above.

#include<stdio.h>
int fib( int n)
{
    if (n <= 1)
       return n;
    return fib(n-1) + fib(n-2);
}
 
int main ()
{
   int n = 9;
   printf ( "%d" , fib(n));
   getchar ();
   return 0;
}

Time Complexity: T(n) = T(n-1) + T(n-2) which is exponential.
We can observe that this implementation does a lot of repeated work (see the following recursion tree). So this is a bad implementation for nth Fibonacci number.

                         fib(5)   
                     /             \     
               fib(4)                fib(3)   
             /      \                /     \
         fib(3)      fib(2)         fib(2)    fib(1)
        /     \        /    \       /    \  
  fib(2)   fib(1)  fib(1) fib(0) fib(1) fib(0)
  /    \
fib(1) fib(0)

Extra Space: O(n) if we consider the function call stack size, otherwise O(1).

Method 2 ( Use Dynamic Programming )
We can avoid the repeated work done is the method 1 by storing the Fibonacci numbers calculated so far. 

#include<stdio.h>
 
int fib( int n)
{
   /* Declare an array to store Fibonacci numbers. */
   int f[n+1];
   int i;
 
   /* 0th and 1st number of the series are 0 and 1*/
   f[0] = 0;
   f[1] = 1;
 
   for (i = 2; i <= n; i++)
   {
       /* Add the previous 2 numbers in the series
          and store it */
       f[i] = f[i-1] + f[i-2];
   }
 
   return f[n];
}
 
int main ()
{
   int n = 9;
   printf ( "%d" , fib(n));
   getchar ();
   return 0;
}

Time Complexity: O(n)
Extra Space: O(n)

Method 3 ( Space Otimized Method 2 )
We can optimize the space used in method 2 by storing the previous two numbers only because that is all we need to get the next Fibannaci number in series.

#include<stdio.h>
int fib( int n)
{
   int a = 0, b = 1, c, i;
   if ( n == 0)
     return a;
   for (i = 2; i <= n; i++)
   {
      c = a + b;
      a = b;
      b = c;
   }
   return b;
}
 
int main ()
{
   int n = 9;
   printf ( "%d" , fib(n));
   getchar ();
   return 0;
}

Time Complexity: O(n)
Extra Space: O(1)

Method 4 ( Using power of the matrix {{1,1},{1,0}} )
This another O(n) which relies on the fact that if we n times multiply the matrix M = {{1,1},{1,0}} to itself (in other words calculate power(M, n )), then we get the (n+1)th Fibonacci number as the element at row and column (0, 0) in the resultant matrix.

The matrix representation gives the following closed expression for the Fibonacci numbers:
fibonaccimatrix

#include <stdio.h>
 
/* Helper function that multiplies 2 matricies F and M of size 2*2, and
   puts the multiplication result back to F[][] */
void multiply( int F[2][2], int M[2][2]);
 
/* Helper function that calculates F[][] raise to the power n and puts the
   result in F[][]
   Note that this function is desinged only for fib() and won't work as general
   power function */
void power( int F[2][2], int n);
 
int fib( int n)
{
   int F[2][2] = {{1,1},{1,0}};
   if (n == 0)
       return 0;
   power(F, n-1);
 
   return F[0][0];
}
 
void multiply( int F[2][2], int M[2][2])
{
   int x =  F[0][0]*M[0][0] + F[0][1]*M[1][0];
   int y =  F[0][0]*M[0][1] + F[0][1]*M[1][1];
   int z =  F[1][0]*M[0][0] + F[1][1]*M[1][0];
   int w =  F[1][0]*M[0][1] + F[1][1]*M[1][1];
 
   F[0][0] = x;
   F[0][1] = y;
   F[1][0] = z;
   F[1][1] = w;
}
 
void power( int F[2][2], int n)
{
   int i;
   int M[2][2] = {{1,1},{1,0}};
 
   // n - 1 times multiply the matrix to {{1,0},{0,1}}
   for (i = 2; i <= n; i++)
       multiply(F, M);
}
 
/* Driver program to test above function */
int main()
{
   int n = 9;
   printf ( "%d" , fib(n));
   getchar ();
   return 0;
}


Time Complexity:
 O(n)
Extra Space: O(1)

Method 5 ( Optimized Method 4 )
The method 4 can be optimized to work in O(Logn) time complexity. We can do recursive multiplication to get power(M, n) in the prevous method (Similar to the optimization done in this post)

#include <stdio.h>
 
void multiply( int F[2][2], int M[2][2]);
 
void power( int F[2][2], int n);
 
/* function that returns nth Fibonacci number */
int fib( int n)
{
   int F[2][2] = {{1,1},{1,0}};
   if (n == 0)
     return 0;
   power(F, n-1);
   return F[0][0];
}
 
/* Optimized version of power() in method 4 */
void power( int F[2][2], int n)
{
   if ( n == 0 || n == 1)
       return ;
   int M[2][2] = {{1,1},{1,0}};
 
   power(F, n/2);
   multiply(F, F);
 
   if (n%2 != 0)
      multiply(F, M);
}
 
void multiply( int F[2][2], int M[2][2])
{
   int x =  F[0][0]*M[0][0] + F[0][1]*M[1][0];
   int y =  F[0][0]*M[0][1] + F[0][1]*M[1][1];
   int z =  F[1][0]*M[0][0] + F[1][1]*M[1][0];
   int w =  F[1][0]*M[0][1] + F[1][1]*M[1][1];
 
   F[0][0] = x;
   F[0][1] = y;
   F[1][0] = z;
   F[1][1] = w;
}
 
/* Driver program to test above function */
int main()
{
   int n = 9;
   printf ( "%d" , fib(9));
   getchar ();
   return 0;
}

Time Complexity: O(Logn)
Extra Space: O(Logn) if we consider the function call stack size, otherwise O(1).

Please write comments if you find the above codes/algorithms incorrect, or find other ways to solve the same problem.

References:
http://en.wikipedia.org/wiki/Fibonacci_number
http://www.ics.uci.edu/~eppstein/161/960109.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值