使用hadoop MapReduce进行排序

本文介绍了如何使用Hadoop的MapReduce进行大规模数据排序。通过TeraSort例子,阐述了利用mapredue的自动排序功能,通过设置TotalOrderPartitioner进行分区,再通过采样确定数据区间,实现分布式文件系统的高效排序。示例代码包括CxfInputFormat和SortByMapReduce类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 在hadoop中的例子TeraSort,就是一个利用mapredue进行排序的例子。本文参考并简化了这个例子:

       排序的基本思想是利用了mapreduce的自动排序功能,在hadoop中,从map到reduce阶段,map出来的结构会按照各个key按照hash值分配到各个reduce中,其中,在reduce中所有的key都是有序的了。如果使用一个reduce,那么我们直接将他output出来就行了,但是这不能够体现分布式的好处,所以,我们还是要用多个reduce来跑。

      比方说我们有1000个1-10000的数据,跑10个ruduce任务, 如果我们运行进行partition的时候,能够将在1-1000中数据的分配到第一个reduce中,1001-2000的数据分配到第二个reduce中,以此类推。即第n个reduce所分配到的数据全部大于第n-1个reduce中的数据。这样,每个reduce出来之后都是有序的了,我们只要cat所有的输出文件,变成一个大的文件,就都是有序的了。

       基本思路就是这样,但是现在有一个问题,就是数据的区间如何划分,在数据量大,还有我们并不清楚数据分布的情况下。一个比较简单的方法就是采样,假如有一亿的数据,我们可以对数据进行采样,如取10000个数据采样,然后对采样数据分区间。在Hadoop中,patition我们可以用TotalOrderPartitioner替换默认的分区。然后将采样的结果传给他,就可以实现我们想要的分区。在采样时,我们可以使用hadoop的几种采样工具,RandomSampler,InputSampler,IntervalSampler。

       这样,我们就可以对利用分布式文件系统进行大数据量的排序了,我们也可以重写Partitioner类中的compare函数,来定义比较的规则,从而可以实现字符串或其他非数字类型的排序,也可以实现二次排序乃至多次排序。

 

参考:《Hadoop权威指南》里面有详细的讲解

CxfInputFormat.java

package com.alibaba.cxf.sort;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.mapred.InputSplit;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.LineRecordReader;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reporter;

public class CxfInputFormat extends FileInputFormat<IntWritable,Text>{
 @Override
 public RecordReader<IntWritable, Text> getRecordReader(InputSplit split,
   JobConf job, Reporter reporter) throws IOException {
  return new CxfRecordReader(job, (FileSplit) split);
 }
 class CxfRecordReader implements RecordReader<IntWritable,Text> {

  private LineRecordReader in;
     private LongWritable junk = new LongWritable();
     private Text line = new Text();
     private  int KEY_LENGTH = 10;
  public CxfRecordReader(JobConf job,FileSplit split) throws IOException{
   in = new LineRecordReader(job, split);
  }
  @Override
  public void close() throws IOException {
   in.close();   
  }
  @Override
  public IntWritable createKey() {
   return new IntWritable();
  }
  @Override
  public Text createValue() {
   
   return new Text();
  }
  @Override
  public long getPos() throws IOException {
   
   return in.getPos();
  }
  @Override
  public float getProgress() throws IOException {
   
   return in.getProgress();
  }
  @Override
  public boolean next(IntWritable key, Text value) throws IOException {
   if (in.next(junk, line)) {
    if (line.getLength() < KEY_LENGTH) {
     key.set(Integer.parseInt(line.toString()));
     value = new Text();
  //   value.clear();
    } else {
     byte[] bytes = line.getBytes();
     key.set(Integer.parseInt(new String(bytes).substring(0, KEY_LENGTH)));
     value = new Text();
    }
    return true;
   } else {
    return false;
   }
  }
 }
}

 

SortByMapReduce.java

package com.alibaba.cxf.sort;

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.apache.hadoop.mapred.lib.InputSampler;
import org.apache.hadoop.mapred.lib.TotalOrderPartitioner;
public class SortByMapReduce {

 /**
  * @param args
  * @throws URISyntaxException
  * @throws IOException
  */
 public static void main(String[] args) throws IOException, URISyntaxException {
  runJob(args);
 }

 private static void runJob(String[] args) throws IOException, URISyntaxException {
  
  JobConf conf = new JobConf(SortByMapReduce.class);
  
  FileInputFormat.setInputPaths(conf, new Path(args[0]));
        FileOutputFormat.setOutputPath(conf, new Path(args[1]));
        conf.setJobName(”SortByMapReduce”);
  
  conf.setInputFormat(CxfInputFormat.class);
  conf.setOutputKeyClass(IntWritable.class);
  conf.setOutputFormat(TextOutputFormat.class);
  conf.setNumReduceTasks(5);
  conf.setPartitionerClass(TotalOrderPartitioner.class);
  InputSampler.RandomSampler<IntWritable, NullWritable> sampler =
   new InputSampler.RandomSampler<IntWritable, NullWritable>(0.1,10000,10);
  
  Path input = FileInputFormat.getInputPaths(conf)[0];
  input = input.makeQualified(input.getFileSystem(conf));
  Path partitionFile = new Path(input,”_partitions”);
  TotalOrderPartitioner.setPartitionFile(conf, partitionFile);
  InputSampler.writePartitionFile(conf, sampler);
  
  URI partitionURI = new URI(partitionFile.toString() + “#_partitions”);
  DistributedCache.addCacheFile(partitionURI, conf);
  DistributedCache.createSymlink(conf);
  JobClient.runJob(conf);  
 } 
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值