【数论】奇奇怪怪的结论

定理一:


素数定理:


定理二:设a>1,m,n>0,则


HDU2685就用到上述定理。


定理三:设a>b,(a,b)=1,则



定理四:设,那么G的值为:


n为素数:本身

n有多个素因子:1

n只有一个素因子:该因子


应用题目:HDU2582.



定理五:,其中为斐波那契数列。



定理六:给定A和B,A和B互质,最大不能组合数为A*B-A-B,不能组合数的个数为


证明:


Gcd(A, B) = 1,Lcm(A, B) = AB

把所有整数划分成A个等价类,每个等价类由相互同余的整数组成任何数分成A个剩余类,分别为 :

Ak,Ak+1,Ak+2,……,Ak+(A-1),分别记为{0(mod A)},{1(mod A)}……

而B的倍数肯定分布在这A个剩余类中,因为Gcd(A,B)=1,所以每个剩余类中都有一些数是B的倍数,并且是平均分配它的

旁证,可见HDOJ 1222 Wolf and Rabbit

设 kmin = min{k|Bk∈{i(mod A)}},i ∈ [0, A)


则 Bkmin 是{i (mod A)}中B的最小倍数。特别的,AB ∈ {0 (mod A)}

Bkmin 是个标志,它表明{i(mod A)}中Bkmin 后面所有数,即Bkmin + jA必定都能被组合出来

那也说明最大不能组合数必定小于Bkmin


我们开始寻找max{ Bkmin },Lcm(A, B) = AB,所以很明显(A-1)B是最大的

因为(A-1)B是Bkmin 中的最大值,所以在剩下的A-1个剩余类中,必定有比它小并且能被A和B组合,这些数就是:

(A-1)B-1,(A-1)B -2,……,(A-1)B -(A-1),所以最大不能被组合数就是(A-1)B -A=AB-A-B


如果A和B不互素,那{1 (mod A)}不能被A组合,同样也不能被B和A组合

我们能求出各个剩余类的Bkmin之后,不能组合数的个数就是每个剩余类中小于各自Bkmin的数的个数总和。

观察如下:A = 5,B = 3

{0(mod 5)}:0,5,10,15……
{1(mod 5)}:1,6,11,16……
{2(mod 5)}:2,7,12,17……
{3(mod 5)}:3,8,13,18……
{4(mod 5)}:4,9,14,19……


红色的就是不能组合数,可以看出在剩余类中它的数目有规律:S = [0+1+2] + [0+1]

因为A和B互质,必有一个不完全周期。

整理后得到结果为:



定理七:


定理八:设,则有以下两个结论成立:


(1)


(2)


典型题目:SPOJ11239  Code:NUMTRYE



定理九:



定理十:如果p是素数,p不整除a,对于同余方程,如果,那么方程有gcd(n,p-1)个解,否则没有解。



  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值