poj2167 Irrelevant Elements

原创 2016年08月30日 13:46:30

Description Young cryptoanalyst Georgie is investigating different
schemes of generating random integer numbers ranging from 0 to m - 1.
He thinks that standard random number generators are not good enough,
so he has invented his own scheme that is intended to bring more
randomness into the generated numbers. First, Georgie chooses n and
generates n random integer numbers ranging from 0 to m - 1. Let the
numbers generated be a1, a2, … , an. After that Georgie calculates
the sums of all pairs of adjacent numbers, and replaces the initial
array with the array of sums, thus getting n - 1 numbers: a1 + a2, a2
+ a3, … , an-1 + an. Then he applies the same procedure to the new array, getting n - 2 numbers. The procedure is repeated until only one
number is left. This number is then taken modulo m. That gives the
result of the generating procedure. Georgie has proudly presented this
scheme to his computer science teacher, but was pointed out that the
scheme has many drawbacks. One important drawback is the fact that the
result of the procedure sometimes does not even depend on some of the
initially generated numbers. For example, if n = 3 and m = 2, then the
result does not depend on a2. Now Georgie wants to investigate this
phenomenon. He calls the i-th element of the initial array irrelevant
if the result of the generating procedure does not depend on ai. He
considers various n and m and wonders which elements are irrelevant
for these parameters. Help him to find it out.

Input Input contains n and m (1 <= n <= 100 000, 2 <= m <= 109).

Output On the first line of the output print the number of irrelevant
elements of the initial array for given n and m. On the second line
print all such i that i-th element is irrelevant. Numbers on the
second line must be printed in the ascending order and must be
separated by spaces.

在纸上推一推可以发现,最后得到的每个元素的系数恰好是杨辉三角的第n行。另外很容易看出,一个元素是无关的,当且仅当他的系数是m的倍数。
于是问题就变成了求C(n-1,0),C(n-1,1)..C(n-1,n-1)中有多少是m的倍数。
很容易想到一种错误的做法,直接用C(n,k)=n!/(n-k)!k!在模m下计算。因为m不一定是质数,所以除数的逆并不一定存在。
可以利用递推式C(n,k)=C(n,k-1)*(n-k+1)/k进行计算,根据唯一分解定理,只要对每个m的质因数的指数进行加减即可。

#include<cstdio>
#include<cstring>
#include<cmath>
int m,n,a[1000010],p[1000010],now[1000010],ans[1000010];
int main()
{
    int i,j,k,x,y,z,tot=0,cnt=0;
    bool flag;
    scanf("%d%d",&n,&m);
    x=sqrt(m+0.5);
    for (i=2;i<=x;i++)
      if (m%i==0)
      {
        a[++tot]=i;
        while (m%i==0)
        {
            m/=i;
            p[tot]++;
        }
      }
    if (m>1)
    {
        a[++tot]=m;
        p[tot]=1;
    }
    for (i=1;i<n-1;i++)
    {
        x=n-i;
        y=i;
        for (j=1;j<=tot;j++)
          while (x%a[j]==0)
          {
            x/=a[j];
            now[j]++;
          }
        for (j=1;j<=tot;j++)
          while (y%a[j]==0)
          {
            y/=a[j];
            now[j]--;
          }
        flag=1;
        for (j=1;j<=tot;j++)
          if (p[j]>now[j])
          {
            flag=0;
            break;
          }
        if (flag) ans[++cnt]=i+1;
    }
    printf("%d\n",cnt);
    for (i=1;i<=cnt;i++)
      printf("%d%c",ans[i],i==cnt?'\n':' ');
}
版权声明:本文为博主原创文章,未经博主允许不得转载,欢迎添加友链。

Codeblocks自动代码格式化

转载于基学姐的博客,链接:http://blog.csdn.net/qwb492859377/article/details/46933185。 在代码框里点右键,按Format u...
  • LLL_yx
  • LLL_yx
  • 2017年08月17日 19:41
  • 321

POJ 3842(质数判断)

7!=5040 所以这题直接求质数比打一千万的表都快 这提高诉我们阶乘其实不算大&看(算)清数据规模 Program cc; var n,t,len,i,j,ans:longint...

POJ 2167 Irrelevant Elements

唯一分解定理+组合数

UVA 1635-Irrelevant Elements(唯一分解定理)

原题链接:点击打开链接 题意:给定n个数a1,a2····an,依次求出相邻两个数值和,将得到一个新数列,重复上述操作,最后结果将变为一个数,问这个数除以m的余数与那些数无关?例如n=3,m=2时,...

【数论】Irrelevant Elements, ACM/ICPC NEERC 2004, UVa1635 【组合数学】

#include using namespace std; int n,m,e[500],ec[500],v[100005],ans[100005]; int main() { ios::sync_...

Irrelevant Elements UVA - 1635

Think: 1埃式筛法筛取素数 2唯一分解定理 3组合数公式(C(k, n) = ((n-k+1)/k)*C(k-1, n))vjudge题目链接以下为Accepted代码#include ...

uva 1635 Irrelevant Elements [组合数, 唯一分解定理]

uva1635 Irrelevant Elements; 唯一分解定理; 组合数; Young cryptoanalyst Georgie is investigating different sch...

UVA 1635 Irrelevant Elements [唯一分解定理]

Irrelevant Elements 唯一分解定理

1635 - Irrelevant Elements

根据递推公式,(指数也可以利用这个公式)    由刘汝佳所言,只需判断二项式展开式的每个项的系数是否是m的倍数即可,由唯一分解定律,只要指数大于m的分解项指数,就可以除尽这一项;    但是要注意,...

插头DP——从不会到入门(POJ 2411,HDU 1565,HDU 2167,HDU 1693,Ural 1519)

#include #include #include #include using namespace std; #define LL long long const int maxn=10...
  • kbdwo
  • kbdwo
  • 2013年11月10日 17:01
  • 9579
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj2167 Irrelevant Elements
举报原因:
原因补充:

(最多只允许输入30个字)