uva10253 Series-Parallel Networks

原创 2017年01月02日 21:48:12

In this problem you are expected to count two-terminal series-parallel
networks . These are electric networks considered topologically or
geometrically, that is, without the electrical properties of the
elements connected. One of the two terminals can be considered as the
source and the other as the sink . A two-terminal network will be
considered series-parallel if it can be obtained iteratively in the
following way:  A single edge is two-terminal series-parallel.  If G
1 and G 2 are two-terminal series-parallel, so is the network obtained
by identifying the sources and sinks, respectively (parallel
composition).  If G 1 and G 2 are two-terminal series-parallel, so is
the network obtained by identifying the sink of G 1 with the source of
G 2 (series composition). Note here that in a series-parallel network
two nodes can be connected by multiple edges. Moreover, networks are
regarded as equivalent, not only topologically, but also when
interchange of elements in series brings them into congruence;
otherwise stated, series interchange is an equivalence operation. For
example, the following three networks are equivalent: Similarly,
parallel interchange is also an equivalence operation. For example,
the following three networks are also equivalent: Now, given a number
N , you are expected to count the number of two-terminal series
parallel networks containing exactly N edges. For example, for N
= 4, there are exactly 10 series-parallel networks as shown below: Input Each line of the input le contains an integer N (1  N  30)
specifying the number of edges in the network. A line containing a
zero for N terminates the input and this input need not be considered.
Output For each N in the input le print a line containing the number
of two-terminal series-parallel networks that can be obtained using
exactly N edges.

不断的串并联其实就是不断的合并边的过程,而且从最后一次回溯,每一层的串并联情况都相同,相邻层之间的串并联情况相反【否则就不分层了】。
这样其实就是一个正整数拆分,可以用动态规划解决。
dp[i][j]表示i条边,最大的联通块不超过j条边的方案数,那么答案ans[i]=dp[i][i1]【因为每一次至少连接两个联通块】,最后需要乘2【串并联互换】。枚举恰好有j条边的联通块数,

dp[i][j]=k=1ijdp[ikj][j1]f(ans[j],k)

其中f(n,k)表示从n个元素中可重复地选取k个的组合数,可以证明
f(n,k)=Ckn+k1

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define LL long long
const int maxn=30;
LL dp[35][35],ans[35];
LL c(LL n,LL k)
{
    double ret=1;
    LL i;
    for (i=n-k+1;i<=n;i++)
      ret*=i;
    for (i=1;i<=k;i++)
      ret/=i;
    return ret+0.5;
}
int main()
{
    int i,j,k,n;
    dp[0][0]=ans[0]=ans[1]=1;
    for (i=1;i<=maxn;i++)
      dp[0][i]=dp[1][i]=1;
    for (j=1;j<=maxn;j++)
    {
        for (i=2;i<=maxn;i++)
          for (k=0;k*j<=i;k++)
            dp[i][j]+=dp[i-k*j][j-1]*c(ans[j]+k-1,k);
        ans[j+1]=dp[j+1][j];
    }
    while (scanf("%d",&n)&&n) printf("%lld\n",n==1?1:2*ans[n]);
}
版权声明:本文为博主原创文章,未经博主允许不得转载,欢迎添加友链。

动态规划(串并联网络,uva 10253)

#include #define maxn 35 using namespace std; typedef long long ll; ll dp[maxn][maxn]; ll f[maxn]; ...

uva 10253 - Series-Parallel Networks

题目链接:uva 10253 - Series-Parallel Networks 题目大意:就是有n条线,通过并联或者是串联,形成一个整体,问说有n条线,可以组成多少种。 解题思路:大白书上的例...

UVA10253 - Series-Parallel Networks(树形DP+(组合) _ 建模很好)(好题)

题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem...

UVa 10253 Series-Parallel Networks

《训练指南》中的第二种算法,其实本质上就是个背包。d[i][j]表示,在子树的节点数最大为i的情况下,j个节点的解。当之前的i-1,i-2,....0的结果都已知的时候,d[i][j]自然可根据下式求...

UVA 10253 - Series-Parallel Networks(数论+计数问题+递推)

题目链接:10253 - Series-Parallel Networks 白书的例题。 这题也是需要把问题进行转化,一个并联可以分为几个串联,然后串联可以分成边。 如此一来,最后叶子结点种数会...

Uva 10253 - Series-Parallel Networks 解题报告(递推)

Problem H Series-Parallel Networks Input: standard input Output:  standard output Time Limit: 5 ...
  • kbdwo
  • kbdwo
  • 2014年03月27日 18:51
  • 590

控制异步回调利器 - async 串行series,并行parallel,智能控制auto简介

async 作为大名鼎鼎的异步控制流程包,在npmjs.org 排名稳居前五,目前已经逐渐形成node.js下控制异步流程的一个规范.async成为异步编码流程控制的老大哥绝非偶然,它不仅使用方便,文...
  • WHACKW
  • WHACKW
  • 2017年03月27日 18:13
  • 286
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:uva10253 Series-Parallel Networks
举报原因:
原因补充:

(最多只允许输入30个字)