POJ 1639 k度限制生成树

原创 2012年06月27日 22:51:54

题意就是求最小生成树  但是有一个顶点的度必须不大于k

具体的方法网上都有,但是代码写起来之复杂难以令人想象,我由于代码能力还太弱,导致只能看着别人的代码重写一遍,优化了一些部分。

1.求出除去K度点的最小生成森林,设森林数为m
2.将这m棵树与K度点用每棵树中与K度点距离最短的点相连,生成一个m度最小生成树,总答案为这个生成树的所有边长之和
3.迭代k-m次,尝试将m度生成树扩展为K度生成树,并求出最小生成树的长度
   (1)扫描k度点的所有邻接点,(注意,这是扫描的原图) 找到一个点使得(新的生成树中该点到K度点最大边的长度)与(原图中K度点到该点的距离)之差最大。 (注意,该点不能是生成树中直接与K度点相连的点)
   (2) 若(1)找出的差值不大于0,则无须继续往下找,否则,在新的生成树中连接该点到K度点,并将最大边替换掉,然后从该点开始更新最大边。此时,m度生成树变为m+1度生成树,总答案减去该差值。
   (3)循环以上步骤,直到变为K度生成树或者跳出
   
4.打印答案


#include <iostream>
#include <map>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define MAXN 105
#define MAXM 100005
#define INF 1000000000
using namespace std;
struct node
{
    int v, w, next;
}edge[MAXM];
struct Edge
{
    int u, v, w;
    Edge(){}
    Edge(int a, int b, int c){u = a; v = b; w = c;}
    void init(){w = 0;}
    bool operator >(const Edge &a) const{
        return w > a.w;
    }
}mx[MAXN];//用于存储每个点到park点的最大边
int n, m, k, sum;//sum为结果
int e, head[MAXN], vis[MAXN], dis[MAXN], use[MAXN][MAXN];//head用于邻接表 vis是标记数组 dis用于求最小生成树
//use用来标记两点之间是否有边
int blocks, size[MAXN], belong[MAXN], nearvex[MAXN];//blocks表示去除park后有几个连通块  size是每个连通块的个数
//belong表示该点属于哪个连通块  nearvex用于在生成树中记录边
int point[MAXN], link[MAXN]; //point表示每个连通块中与park点最近的点  link则是该点与park点的距离
map<string, int>mp; //用于映射名字
void init()
{
    e = 0, n = 1;
    blocks = 0, sum = 0;
    memset(head, -1, sizeof(head));
    memset(vis, 0, sizeof(vis));
    memset(size, 0, sizeof(size));
    memset(use, 0, sizeof(use));
    for(int i = 1; i < MAXN; i++) mx[i].init();
    memset(nearvex, 0, sizeof(nearvex));
    mp.clear();
}
void insert(int x, int y, int w)
{
    edge[e].v = y;
    edge[e].w = w;
    edge[e].next = head[x];
    head[x] = e++;
}
int getId(char s[])
{
    if(mp.find(s) == mp.end()) mp[s] = ++n;
    else return mp[s];
    return n;
}
void dfs(int v) //该dfs将图分成了一些连通块
{
    vis[v] = 1;
    size[blocks]++;
    belong[v] = blocks;
    for(int i = head[v]; i != -1; i = edge[i].next)
        if(!vis[edge[i].v]) dfs(edge[i].v);
}
void prim(int cur) //对某个连通块求最小生成树
{
    for(int i = 1; i <= n; i++) dis[i] = INF;
    for(int i = 1; i <= n; i++) //设置块内某点为起点来求生成树
        if(belong[i] == cur)
        {
            dis[i] = 0;
            break;
        }
    for(int i = 1; i <= size[cur]; i++)  //循环次数为该块的顶点数,因为这与一般的求MST略微不同
    {
        int mi = INF, pos = -1;
        for(int j = 1; j <= n; j++)
            if(nearvex[j] != -1 && mi > dis[j])
                mi = dis[j], pos = j;
        if(pos != -1)
        {
            sum += mi;
            use[pos][nearvex[pos]] = use[nearvex[pos]][pos] = 1; //标记生成树中所用的边
            nearvex[pos] = -1;
            for(int j = head[pos]; j != -1; j = edge[j].next)
                if(nearvex[edge[j].v] != -1 && dis[edge[j].v] > edge[j].w)
                {
                    dis[edge[j].v] = edge[j].w;
                    nearvex[edge[j].v] = pos;
                }
        }
    }
}
void getMax(int v, int fa, int w) //该函数用于更新新的生成树中点到park点的最大边
{
    nearvex[v] = fa;
    Edge t(v, fa, w);
    if(mx[fa] > t) mx[v] = mx[fa];
    else mx[v] = t;
    for(int i = head[v]; i != -1; i = edge[i].next)
        if(use[v][edge[i].v] && edge[i].v != fa) getMax(edge[i].v, v, edge[i].w); //必须是生成树中的边并且不是回边才往下搜
}
void GetMdegreeMST()
{
    vis[1] = 1;
    for(int i = 2; i <= n; i++) //求连通块
        if(!vis[i])
        {
            blocks++;
            dfs(i);
        }
    nearvex[1] = -1;
    for(int i = 1; i <= blocks; i++) prim(i);
    for(int i = 1; i <= n; i++) link[i] = INF;
    for(int i = head[1]; i != -1; i = edge[i].next)  //生成一棵m度的生成树
        if(link[belong[edge[i].v]] > edge[i].w)
        {
            link[belong[edge[i].v]] = edge[i].w;
            point[belong[edge[i].v]] = edge[i].v;
        }
    for(int i = 1; i <= blocks; i++) //将park点与每个连通块中与其最近的点相连,并且标记边
    {
        sum += link[i];
        use[1][point[i]] = use[point[i]][1] = 1;
    }
}
void slove()
{
    int degree = blocks;
    getMax(1, 0, 0); //首先从park点出发求一遍最大边
    while(degree < k) //尝试迭代 k - degree次
    {
        int maxval = 0, pos = 0, w;
        for(int i = head[1]; i != -1; i = edge[i].next) //用于找到差值最大的点
            if(!use[1][edge[i].v] && mx[edge[i].v].w - edge[i].w > maxval)
            {
                maxval = mx[edge[i].v].w - edge[i].w, pos = edge[i].v;
                w = edge[i].w;
            }
        if(!pos) break;
        sum -= maxval;//更新答案
        degree++;
        use[mx[pos].u][mx[pos].v] = use[mx[pos].v][mx[pos].u] = 0;//将最大边删除
        use[1][pos] = use[pos][1] = 1;
        getMax(pos, 1, w);//更新最大边
    }
}
int main()
{
    char s1[55], s2[55];
    int w;
    scanf("%d", &m);
    init();
    mp["Park"] = 1;
    for(int i = 0; i < m; i++)
    {
        scanf("%s%s%d", s1, s2, &w);
        insert(getId(s1), getId(s2), w);
        insert(getId(s2), getId(s1), w);
    }
    scanf("%d", &k);
    GetMdegreeMST();
    slove();
    printf("Total miles driven: %d\n", sum);
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

poj1639 Picnic Planning 限制顶点度数的MST

题意: 有n个兄弟去野餐,目的地为Park。每个人可以选择直接去Park,也可以选择去其他人家,和他一起坐车去Park。 每个人家的停车位没有限制,但是Park的停车数不能超过k。问所有人的最短路程。...

poj1639

有n个巨人要去Park聚会。巨人A和先到巨人B那里去,然后和巨人B一起去Park。B君是个土豪,他家的停车场很大,可以停很多车,但是Park的停车场是比较小。只能停k辆车。现在问你在这个限制条件下。居...
  • NaCl__
  • NaCl__
  • 2016年07月28日 09:45
  • 280

poj1639 Picnic Planning 最小度数限制生成树

题意:若干个人开车要去park聚会,但是park能停的车是有限的,为k。所以这些人要通过先开车到其他人家中,停车,然后拼车去聚会。另外,车的容量是无限的,他们家停车位也是无限的。求开车总行程最短。 ...

poj_1639 Picnic Planning(度限制最小生成树)

Picnic Planning Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 10431   Accepted:...

(advanced) UVA 最小生成树(限制度数) UVA 1537 Picnic Planning

The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible abi...

poj 1639 Picnic Planning 最小K度限制生成树

Picnic PlanningTime Limit: 5000MS Memory Limit: 10000KTotal Submissions: 5846 Accepted: 1934Descript...

POJ 1639(K度限制的生成树)

题目大意是: 矮人虽小却喜欢乘坐巨大的轿车,轿车大到可以装下无论多少矮人。某天,N(N≤5000)个矮人打算到野外聚餐。为了集中到聚餐地点,矮人A要么开车到矮人B家中,留下自己的轿车在矮人B家,然后乘...

POJ 1639 Picnic Planning (k度限制最小生成树)

题目类型  次小生成树 题目意思 给出 n 个点 m 条边问最小生成树是否唯一 (n 解题方法 先用kruscal算法求出最小生成树和构成最小生成树的边 ...

POJ 1639:Picnic Planning(最小度限制生成树)

Picnic Planning Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 7356  ...
  • wugj03
  • wugj03
  • 2012年04月18日 12:34
  • 798

P300-野餐计划(POJ-1639最小度限制生成树)

黑书上的例题,具体模型是求一个无向图的最小生成树,其中有一个点的度有限制(假设为 k)。   要求最小 k 度生成树,我们可以按照下面的步骤来做: 设有度限制的点为 V0 ,V0称为根节点 1...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 1639 k度限制生成树
举报原因:
原因补充:

(最多只允许输入30个字)