阶乘因式分解

原创 2012年03月27日 23:20:45

http://acm.nyist.net/JudgeOnline/problem.php?pid=70

阶乘因式分解(二)

时间限制:3000 ms  |  内存限制:65535 KB
难度:2
描述

给定两个数n,m,其中m是一个素数。

将n(0<=n<=2^31)的阶乘分解质因数,求其中有多少个m。

注:^为求幂符号。

 

输入
第一行是一个整数s(0<s<=100),表示测试数据的组数
随后的s行, 每行有两个整数n,m。
输出
输出m的个数
样例输入
3
100 5
16 2
1000000000  13
样例输出
24
15
83333329
#include<stdio.h>
int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		int m,n;
		scanf("%d%d",&m,&n);
		long int sum=0;
		while(1)
		{
			sum+=m/n;
			m=m/n;
			if(m==0)
				break;
		}
		printf("%d\n",sum);
	}
}

思路:

给定两个数m,n

求m!分解质因数后因子n的个数。

这道题涉及到了大数问题,如果相乘直接求的话会超出数据类型的范围。

下面给出一种效率比较高的算法,我们一步一步来。

m!=1*2*3*……*(m-2)*(m-1)*m

可以表示成所有和n倍数有关的乘积再乘以其他和n没有关系的

    =(n*2n*3n*......*kn)*ohter     other是不含n因子的数的乘积   因为 kn<=m 而k肯定是最大值  所以k=m/n

    =n^k*(1*2*......*k)*other  

    =n^k*k!*other     

从这个表达式中可以提取出k个n,然后按照相同的方法循环下去可以求出k!中因子n的个数。

每次求出n的个数的和就是m!中因子n的总个数。

特殊的阶乘因式分解

  • 2013年05月06日 21:14
  • 357B
  • 下载

阶乘因式分解(二) nyist

描述 给定两个数n,m,其中m是一个素数。 将n(0 注:^为求幂符号。   输入第一行是一个整数s(0 随后的s行, 每行有两个整数n,m。 ...

nyoj70阶乘因式分解(数学)

阶乘因式分解(二) 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描述 给定两个数n,m,其中m是一个素数。 将n(0 注...

hdoj 4196 Remoteland 【阶乘因式分解中质因子个数 + 费马小定理】

Remoteland Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 262144/131072 K (Java/Others) To...

nyoj 56/70(阶乘的因式分解)

阶乘因式分解(二) 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描述 给定两个数n,m,其中m是一个素数。 将n(0 注...
  • Sxx312
  • Sxx312
  • 2016年04月26日 18:54
  • 265

阶乘因式分解(一)

阶乘因式分解(一) 时间限制:3000 ms  |  内存限制:65535 KB 难度:2   描述 给定两个数m,n,其中m是一个素数。 将n(0 ...

NYOJ 56 阶乘因式分解(一)

阶乘因式分解(一) 时间限制:3000 ms  |  内存限制:65535 KB 难度:2 描述 给定两个数m,n,其中m是一个素数。 将n(0 输...

阶乘因式分解问题

问题:N! 结果零的个数 分析: 求零的个数即10的因子个数,而10=5*2 即求5和2的对数 记N! 的因子x个数为ans(x) 显然在N! 中ans(2)>ans(5) 则ans(10...
  • ctsas
  • ctsas
  • 2016年12月08日 17:40
  • 160

阶乘因式分解(一)(参考+思考)

阶乘因式分解(一)(参考+思考) /*暴力因式分解*/  #include   #include   #define N 10000   int cnt[N];  bo...

nyoj_56 阶乘因式分解(一)

阶乘因式分解(一) 时间限制:3000 ms  |  内存限制:65535 KB 难度:2 描述 给定两个数m,n,其中m是一个素数。 将n(0 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:阶乘因式分解
举报原因:
原因补充:

(最多只允许输入30个字)