关闭

阶乘因式分解

标签: 算法测试
2381人阅读 评论(0) 收藏 举报
分类:

http://acm.nyist.net/JudgeOnline/problem.php?pid=70

阶乘因式分解(二)

时间限制:3000 ms  |  内存限制:65535 KB
难度:2
描述

给定两个数n,m,其中m是一个素数。

将n(0<=n<=2^31)的阶乘分解质因数,求其中有多少个m。

注:^为求幂符号。

 

输入
第一行是一个整数s(0<s<=100),表示测试数据的组数
随后的s行, 每行有两个整数n,m。
输出
输出m的个数
样例输入
3
100 5
16 2
1000000000  13
样例输出
24
15
83333329
#include<stdio.h>
int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		int m,n;
		scanf("%d%d",&m,&n);
		long int sum=0;
		while(1)
		{
			sum+=m/n;
			m=m/n;
			if(m==0)
				break;
		}
		printf("%d\n",sum);
	}
}

思路:

给定两个数m,n

求m!分解质因数后因子n的个数。

这道题涉及到了大数问题,如果相乘直接求的话会超出数据类型的范围。

下面给出一种效率比较高的算法,我们一步一步来。

m!=1*2*3*……*(m-2)*(m-1)*m

可以表示成所有和n倍数有关的乘积再乘以其他和n没有关系的

    =(n*2n*3n*......*kn)*ohter     other是不含n因子的数的乘积   因为 kn<=m 而k肯定是最大值  所以k=m/n

    =n^k*(1*2*......*k)*other  

    =n^k*k!*other     

从这个表达式中可以提取出k个n,然后按照相同的方法循环下去可以求出k!中因子n的个数。

每次求出n的个数的和就是m!中因子n的总个数。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:144924次
    • 积分:1936
    • 等级:
    • 排名:千里之外
    • 原创:61篇
    • 转载:26篇
    • 译文:0篇
    • 评论:13条
    文章分类
    最新评论