# 相机模型（来自opencv documentation）

1> pin-hole model:

The functions in this section use a so-called pinhole camera model. In this model, a scene view is formed by projecting 3D points into the image planeusing a perspective transformation.

or

where:

• are the coordinates of a 3D point in the world coordinate space
• are the coordinates of the projection point in pixels
• is a camera matrix, or a matrix of intrinsic parameters
• is a principal point that is usually at the image center
• are the focal lengths expressed in pixel units.

Thus, if an image from the camera isscaled by a factor, all of these parameters shouldbe scaled (multiplied/divided, respectively) by the same factor. Thematrix of intrinsic parameters does not depend on the scene viewed. So,once estimated, it can be re-used as long as the focal length is fixed (incase of zoom lens). The joint rotation-translation matrix is called a matrix of extrinsic parameters. It is used to describe thecamera motion around a static scene, or vice versa, rigid motion of anobject in front of a still camera. That is, translatescoordinates of a point to a coordinate system,fixed with respect to the camera. The transformation above is equivalentto the following (when ):

Real lenses usually have some distortion, mostlyradial distortion and slight tangential distortion. So, the above modelis extended as:

,,,,, and are radial distortion coefficients. and are tangential distortion coefficients.Higher-order coefficients are not considered in OpenCV. In the functions below the coefficients are passed or returned as

vector. That is, if the vector contains four elements, it means that .The distortion coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera parameters. And they remain the same regardless of the captured image resolution.If, for example, a camera has been calibrated on images of320x240 resolution, absolutely the same distortion coefficients canbe used for640x480 images from the same camera while,,, and need to be scaled appropriately.

The functions below use the above model to do the following:

• Project 3D points to the image plane given intrinsic and extrinsic parameters.
• Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their projections.
• Estimate intrinsic and extrinsic camera parameters from several views of a known calibration pattern (every view is described by several 3D-2D point correspondences).
• Estimate the relative position and orientation of the stereo camera “heads” and compute therectification transformation that makes the camera optical axes parallel.

2> fisheye model:

Definitions:Let P be a point in 3D of coordinates X in the world reference frame (stored in the matrix X)The coordinate vector of P in the camera reference frame is:

class center

where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om);call x, y and z the 3 coordinates of Xc:

class center

The pinehole projection coordinates of P is [a; b] where

class center

Fisheye distortion:

class center

The distorted point coordinates are [x’; y’] where

(此处opencv文档有些不清楚， 本人验证并更正如下，附matlab验证代码)

x' = (theta_d / r)* a
y' = (theta_d / r)* b


Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where:

class center

u = fx * x' + Cx;

v = fy * y' + Cy;

3> other materail

http://wenku.baidu.com/view/580fa337ee06eff9aef807cc.html

opencv 鱼眼模型验证：

clear
close all

R = [0.8988261790903926, 0.4188302467301371, 0.129200325873188;
-0.4187798435070649, 0.9076282961426588, -0.02888457570005586;
-0.1293636056005076, -0.02814427943910706, 0.9911977386379015];

t = [-0.402431, 0.0388337, 0.671309]';

A = [594.1656343384788, 0, 643.4646451030211;
0, 593.6065468136707, 371.2638324096167;
0, 0, 1];

K = [-0.04192856403922697;
-0.002158383400516276;
0.001463386066034605;
-0.005204957317263106];

img_data = [ 327.005707, 401.706879, 382.578613, 368.528595, 447.612915, 331.631134, 521.767090, 291.437500, ...
603.254089, 249.857986, 688.284241, 209.167130, 772.313904, 171.579849, 851.017456, 138.804169, ...
921.380676, 111.622528, 982.589966, 89.692650, 355.885986, 474.680847, 413.861481, 445.651489, ...
481.566345, 412.371521, 558.414246, 374.775757, 642.492310, 334.675598, 729.559509, 293.751709, ...
814.828247, 254.507523, 893.690674, 218.945618, 963.500610, 187.922989, 1023.213501, 161.938385, ...
389.184540, 547.380920, 449.031677, 523.005493, 518.651978, 494.009918, 597.481384, 460.122589, ...
682.705994, 422.229462, 770.243408, 381.848572, 855.282410, 341.607635, 933.055847, 303.314911, ...
1001.264832, 268.784271, 1059.156372, 238.558731, 424.892181, 617.114441, 486.681976, 597.320923, ...
557.592102, 572.413391, 636.631287, 542.460144, 721.497192, 507.358459, 807.830017, 468.430420, ...
891.032349, 427.681854, 966.609009, 387.922577, 1032.822144, 350.344391, 1088.560547, 316.416199 ];

obj_data = [ 0.000000, 0.000000,0.100000, 0.000000,0.200000, 0.000000,0.300000, 0.000000, ...
0.400000, 0.000000,0.500000, 0.000000,0.600000, 0.000000,0.700000, 0.000000, ...
0.800000, 0.000000,0.900000, 0.000000,0.000000, 0.100000,0.100000, 0.100000, ...
0.200000, 0.100000,0.300000, 0.100000,0.400000, 0.100000,0.500000, 0.100000, ...
0.600000, 0.100000,0.700000, 0.100000,0.800000, 0.100000,0.900000, 0.100000, ...
0.000000, 0.200000,0.100000, 0.200000,0.200000, 0.200000,0.300000, 0.200000, ...
0.400000, 0.200000,0.500000, 0.200000,0.600000, 0.200000,0.700000, 0.200000, ...
0.800000, 0.200000,0.900000, 0.200000,0.000000, 0.300000,0.100000, 0.300000, ...
0.200000, 0.300000,0.300000, 0.300000,0.400000, 0.300000,0.500000, 0.300000, ...
0.600000, 0.300000,0.700000, 0.300000,0.800000, 0.300000,0.900000, 0.300000];

%% import data

img_point = zeros(2, 40);
obj_point = zeros(3, 40);

img_pre = zeros(2, 40);
obj_pre = zeros(3, 40);

for n = 1: 40
img_point(1, n) = img_data(2*n - 1);
img_point(2, n) = img_data(2*n);
obj_point(1, n) = obj_data(2*n - 1);
obj_point(2, n) = obj_data(2*n);
obj_point(3, n) = 0.0;
end

figure(1); hold on;
plot3(obj_point(1,:), obj_point(2,:), obj_point(3,:), 'r*');
grid on;

figure(2); hold on;
plot(img_point(1, :), img_point(2, :), 'r*');
axis equal;

for n = 1: 40
obj_point(:, n) =  R * obj_point(:, n) + t;
end

figure(1); hold on;
plot3(obj_point(1, :), obj_point(2, :), obj_point(3, :), 'b*');
axis equal;

%% with no distortion
temp = A*obj_point;

temp(1, :) = temp(1,:)./ temp(3,:);
temp(2, :) = temp(2,:)./ temp(3,:);
temp(3, :) = temp(3,:)./ temp(3,:);

figure(2)
hold on;
plot(temp(1, :), temp(2, :), 'b*');
axis equal;

%% with distortion
for n = 1:40
a = obj_point(1, n) /obj_point(3, n);
b = obj_point(2, n) /obj_point(3, n);

r = sqrt(a^2 + b^2);

theta = atan(r);

theta_d = theta* (1 + K(1) * theta^2 + K(2) * theta^4 + K(3)*theta^6  + K(4)*theta^8);

temp(1,n) = A(1,1)*(theta_d / r) * a + A(1,3);
temp(2,n) = A(2,2)*(theta_d / r) * b + A(2,3);

end

figure(2)
hold on;
plot(temp(1, :), temp(2, :), 'g*');
axis equal;


• 本文已收录于以下专栏：

## xtion pro live 单目视觉半直接法(SVO)实践

svo的下载编译可以查看教程：https://github.com/uzh-rpg/rpg_svo/wiki 跑完下作者提供的数据集后，我就想用自己手边的摄像头来看下实际效果。 但要用自己的摄像头...

## Delphi7高级应用开发随书源码

• 2003年04月30日 00:00
• 676KB
• 下载

## 相机成像模型

• cry1994
• 2016年09月24日 11:41
• 2180

## Python调用windows下DLL详解 - ctypes库的使用

P.S. 之前的排版乱掉了，这里做一下排版，顺便改一下里面的一些用词错误。  2011-08-04     在python中某些时候需要C做效率上的补充，在实际应用中，需要做部分数据的交...

## 相机模型与标定（五）--opencv棋盘格角点检测算法

举报原因： 您举报文章：相机模型（来自opencv documentation） 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)