poj 1845 Sumdiv 矩阵法求幂的和

原创 2015年07月08日 11:40:49

题意:

给A,B,求A^B所有因子模9901的和(0 <= A,B <= 50000000)。

分析:

因素分解后关键是求1+p^1+p^2+....p^k的和,因为等比数列和公式涉及除法,不用乘法逆元的话不能直接用公式。设s(k+1)=p^0+p^1+...p^k,s0=0,则


然后就能2分幂快速求了。

代码:

//poj 1845
//sep9
#include <iostream>
using namespace std;
typedef __int64 INT;
const INT mod=9901;
const int list_len=32;
INT A,B;
INT num[list_len],v[list_len];
INT mat[2][2],tmp[2][2],a[2][2];

void mul(INT z[][2],INT x[][2],INT y[][2])
{
	for(int i=0;i<2;++i)
		for(int j=0;j<2;++j)
			tmp[i][j]=0;
	for(int i=0;i<2;++i)
		for(int j=0;j<2;++j)
			for(int k=0;k<2;++k)
				tmp[i][j]=(tmp[i][j]+x[i][k]*y[k][j])%mod;
	for(int i=0;i<2;++i)
		for(int j=0;j<2;++j)
			z[i][j]=tmp[i][j];				
}

INT f(INT p,INT tmp_k){
	INT k=tmp_k*B+1;
	mat[0][0]=p;mat[0][1]=0;
	mat[1][0]=1;mat[1][1]=1;
	a[0][0]=1;a[0][1]=0;
	a[1][0]=0;a[1][1]=1;
	while(k){
		if(k&1)
			mul(a,a,mat);//a=a*mat;
		mul(mat,mat,mat);	//mat=mat*mat;
		k/=2;
	}
	return a[1][0];
}

int main()
{
	scanf("%I64d%I64d",&A,&B);
	int l=0;
	memset(num,0,sizeof(num));
	for(INT i=2;i*i<=A;++i)
		if(A%i==0){
			v[l]=i;
			while(A%i==0){
				++num[l];
				A/=i;
			}
			++l;
		}
	if(A!=1){
		v[l]=A;
		num[l++]=1;
	}
	INT ans=1;
	for(int i=0;i<l;++i)
		ans=(ans*f(v[i],num[i]))%mod;
	printf("%I64d",ans);
	return 0;	
} 




POJ1845-Sumdiv

转载请注明出处:優YoU  http://user.qzone.qq.com/289065406/blog/1309237394   大致题意: 求A^B的所有约数(即因子)之和,并对其取模...
  • lyy289065406
  • lyy289065406
  • 2011年07月31日 16:29
  • 5723

POJ 1845:Sumdiv 快速幂+逆元

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16466   Accepted: 4101 ...
  • u010885899
  • u010885899
  • 2015年09月17日 10:41
  • 1332

POJ 1845 Sumdiv 快速求幂+同余+乘法逆元

题意:给定A, B,求A^B的所有因数之和,并模9901。 题解: 1: 对A进行素因子分解得      A = p1^a1 * p2^a2 * p3^a3 *...* pn^an.   ...
  • Tsaid
  • Tsaid
  • 2012年03月15日 21:03
  • 1549

poj 1845 Sumdiv 数论--等比数列和(逆元或者递归)

逆元求分数取模代码: #include #include #include #include using namespace std; const int mod=9901; int pow...
  • a601025382s
  • a601025382s
  • 2013年10月02日 12:10
  • 1478

POJ 1845 Sumdiv (因子和)

题目:http://poj.org/problem?id=1845 题意:给定A,B,S为A^B的因子和,求S%9901。 分析:这里给出三种方法。 方法一:首先将A进行素因子分解,...
  • w20810
  • w20810
  • 2015年03月04日 18:07
  • 353

poj 1845 Sumdiv

点击打开链接poj 1845 思路:数学+二分 分析: 1 题目要求的是A^B的所有因子的和对9901取模 2 先看几个数学定理 1:整数的唯一分解定理(如果A本身就是素数的话,那么...
  • cgl1079743846
  • cgl1079743846
  • 2012年11月11日 21:38
  • 560

POJ 1845 Sumdiv (快速幂)

题目链接 : http://poj.org/problem?id=1845 题意 : 求∑(x^n的所有因子) mod 9901; 思路 : 如果 x = p1^a1 * p2^a2 * p3^a3....
  • u010619381
  • u010619381
  • 2014年01月19日 20:30
  • 653

POJ 1845 Sumdiv (因子和)

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15404   Accepted: 3800 ...
  • u013068502
  • u013068502
  • 2015年04月25日 00:00
  • 659

【POJ 1845】Sumdiv

首先可以把A质因数分解,然后用等比数列求和公式求出每个质因数可能的贡献。 现在问题来了,在模9901的情况下如何做除法。 一个显然的想法就是求出逆元,因为9901是一个质数,所以直接乘上逆元即可。...
  • Ripped
  • Ripped
  • 2017年03月14日 10:44
  • 99

POJ 1845 Sumdiv 笔记

自然数A和B,求A ^ B的所有自然除数的总和。 
  • woniupengpeng
  • woniupengpeng
  • 2017年06月21日 19:34
  • 54
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 1845 Sumdiv 矩阵法求幂的和
举报原因:
原因补充:

(最多只允许输入30个字)