poj 1845 Sumdiv 矩阵法求幂的和

原创 2015年07月08日 11:40:49

题意:

给A,B,求A^B所有因子模9901的和(0 <= A,B <= 50000000)。

分析:

因素分解后关键是求1+p^1+p^2+....p^k的和,因为等比数列和公式涉及除法,不用乘法逆元的话不能直接用公式。设s(k+1)=p^0+p^1+...p^k,s0=0,则


然后就能2分幂快速求了。

代码:

//poj 1845
//sep9
#include <iostream>
using namespace std;
typedef __int64 INT;
const INT mod=9901;
const int list_len=32;
INT A,B;
INT num[list_len],v[list_len];
INT mat[2][2],tmp[2][2],a[2][2];

void mul(INT z[][2],INT x[][2],INT y[][2])
{
	for(int i=0;i<2;++i)
		for(int j=0;j<2;++j)
			tmp[i][j]=0;
	for(int i=0;i<2;++i)
		for(int j=0;j<2;++j)
			for(int k=0;k<2;++k)
				tmp[i][j]=(tmp[i][j]+x[i][k]*y[k][j])%mod;
	for(int i=0;i<2;++i)
		for(int j=0;j<2;++j)
			z[i][j]=tmp[i][j];				
}

INT f(INT p,INT tmp_k){
	INT k=tmp_k*B+1;
	mat[0][0]=p;mat[0][1]=0;
	mat[1][0]=1;mat[1][1]=1;
	a[0][0]=1;a[0][1]=0;
	a[1][0]=0;a[1][1]=1;
	while(k){
		if(k&1)
			mul(a,a,mat);//a=a*mat;
		mul(mat,mat,mat);	//mat=mat*mat;
		k/=2;
	}
	return a[1][0];
}

int main()
{
	scanf("%I64d%I64d",&A,&B);
	int l=0;
	memset(num,0,sizeof(num));
	for(INT i=2;i*i<=A;++i)
		if(A%i==0){
			v[l]=i;
			while(A%i==0){
				++num[l];
				A/=i;
			}
			++l;
		}
	if(A!=1){
		v[l]=A;
		num[l++]=1;
	}
	INT ans=1;
	for(int i=0;i<l;++i)
		ans=(ans*f(v[i],num[i]))%mod;
	printf("%I64d",ans);
	return 0;	
} 




相关文章推荐

POJ 1845 Sumdiv 快速求幂+同余+乘法逆元

题意:给定A, B,求A^B的所有因数之和,并模9901。 题解: 1: 对A进行素因子分解得      A = p1^a1 * p2^a2 * p3^a3 *...* pn^an.   ...
  • Tsaid
  • Tsaid
  • 2012年03月15日 21:03
  • 1514

poj 1845 Sumdiv (快速求幂+同余或 乘法逆元)

大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出。   解题思路: 要求有较强 数学思维 的题 应用定理主要有三个: 要求有较强 数学思维 的题 应用定理主要有三...

POJ 1845:Sumdiv 快速幂+逆元

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16466   Accepted: 4101 ...

POJ 1845 Sumdiv 求某数的幂取模

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 11049   Accept...
  • acbron
  • acbron
  • 2013年04月10日 21:00
  • 273

poj 1845 Sumdiv (大数幂取模)

Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. ...

POJ 1845 Sumdiv(数论+快速幂)

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 19576   Accept...
  • nare123
  • nare123
  • 2016年09月19日 23:48
  • 122

POJ 1845 Sumdiv (快速幂+质因数+约数和公式+同余模)

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16109   Accepted: 3992 ...

POJ 1845 Sumdiv(质因数分解+快速幂+二分法求等比数列的和)

题目大意:求 A ^ B 的所有约数的和 模 9901 的值。 解题思路: 1、对A进行素因子分解得:      A  =  p1^a1  *  p2^a2  *  p3^a3  * ... ...

poj 1845 Sumdiv (同余定理,快速幂取余)

题意:求A^B的所有因子的和对9901取余后的值 如:2^3=8,8的因子有 1,2,4,8,所有和为15,取余后也是15 应用定理主要有三个: (1)整数的唯一分解定理: 任意正整数都有且...

poj 1845 Sumdiv(数论:欧拉函数+二分求等比数列前n项和+快速幂取模)

很凶残的一道题啊... 给定一个n先用欧拉函数求出
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 1845 Sumdiv 矩阵法求幂的和
举报原因:
原因补充:

(最多只允许输入30个字)